Estimating Design Discharges for Drainage Structures in Western Kansas

Bruce M. McEnroe, Ph.D., P.E.
C. Bryan Young, Ph.D., P.E.
Aaron R. Williams
Matt Hinshaw
The University of Kansas

A cooperative transportation research program between Kansas Department of Transportation,
Kansas State University Transportation Center, and The University of Kansas

This page intentionally left blank.

	2 Government Accession No.		3 Recipient Catalog No.
4 Title and Subtitle Estimating Design Discharges for Drainage Structures in Western Kansas			5Report Date June 2013
			6 Performing Organization Code
7 Author(s) Bruce M. McEnroe, Ph.D., P.E.; C. Bryan Young, Ph.D., P.E.; Aaron R. Williams; Matt Hinshaw			8 Performing Organization Report No.
9 Performing Organization Name and Address University of Kansas Civil, Environmental \& Architectural Engineering Department 1530 West $15^{\text {th }}$ Street Lawrence, Kansas 66045-7609			10 Work Unit No. (TRAIS)
			11 Contract or Grant No. C1912
12 Sponsoring Agency Name and Address Kansas Department of Transportation Bureau of Research 2300 SW Van Buren Topeka, Kansas 66611-1195			13 Type of Report and Period Covered Final Report October 2011-January 2013
			14 Sponsoring Agency Code RE-0580-01
15 Supplementary Notes			
KDOT engineers have expressed concern that the hydrologic methods in the current KDOT Design Manual (Volume I, Part C, 2011) may lead to over-sizing of drainage structures in Western Kansas. Some new structures designed by the current methods are much larger than the previous structures at these locations or existing structures directly upstream or downstream, where the older structures had no known history of overtopping. There are reasons to suspect that current methods may not be well suited to small watersheds in Western Kansas, particularly for areas with high soil permeability. This report examines the applicability of KDOT's current hydrologic methods to Western Kansas and develops new Rational C values and flood-frequency regression equations for this region. In addition, KDOT's current hydrologic methods are compared with those of nearby state DOTs. In order to develop new flood-frequency regression equations and recommendations for Rational C values for Western Kansas, we assembled a data set of all USGS gaging stations that met the following criteria: (1) at least 10 years of peak flow records, (2) watershed area less than $100 \mathrm{mi}^{2}$, (3) unregulated watersheds (no major lakes or reservoirs), and (4) watersheds within 100 miles of the Kansas border and west of 97.5° longitude. The resulting data set contains 156 stations, 62 of which are in Kansas. Regional flood frequency analyses were performed on this data set using Generalize Least Squares regression in WREG 1.0. Soil permeability was found not to be a significant predictor variable. Regression equations were developed for Western Kansas, but our comparisons show that these equations are not a substantial improvement over existing regression equations. Based on an evaluation of available methods, we recommend the Extended Rational method for watershed areas >640 ac and <30 mi^{2} and the USGS four-parameter regression equation for watersheds $\geq 30 \mathrm{mi}^{2}$ in both Western and Eastern Kansas. An analysis of Rational C values indicates that C values currently used for design in Western Kansas are too high for recurrence intervals below 100 years. New Rational C values for Western Kansas were developed and checked against regression methods for consistency. Our proposed C values for Western Kansas are lower than the current values for all recurrence intervals below 100 years. We also propose certain adjustments to the Rational C values for Eastern Kansas. We recommend that urban open spaces and pervious surfaces within the right-of-way be considered equivalent to pasture/range rather than cropland in both Western and Eastern Kansas.			
17 Key Words Drainage, Structures, Runoff Coefficient C-Value, Rational Method		18 Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service www.ntis.gov.	
19 Security Classification (of this report) Unclassified	20 Security Classification (of this page) Unclassified	21 $\begin{aligned} & \text { No. of pages } \\ & 84\end{aligned}$	22 Price

Estimating Design Discharges for Drainage Structures in Western Kansas

Final Report

Prepared by

Bruce M. McEnroe, Ph.D., P.E.
C. Bryan Young, Ph.D., P.E.
Aaron R. Williams
Matt Hinshaw

A Report on Research Sponsored by
 THE KANSAS DEPARTMENT OF TRANSPORTATION TOPEKA, KANSAS
 and
 THE UNIVERSITY OF KANSAS
 LAWRENCE, KANSAS

June 2013
© Copyright 2013, Kansas Department of Transportation

PREFACE

The Kansas Department of Transportation's (KDOT) Kansas Transportation Research and NewDevelopments (K-TRAN) Research Program funded this research project. It is an ongoing, cooperative and comprehensive research program addressing transportation needs of the state of Kansas utilizing academic and research resources from KDOT, Kansas State University and the University of Kansas. Transportation professionals in KDOT and the universities jointly develop the projects included in the research program.

NOTICE

The authors and the state of Kansas do not endorse products or manufacturers. Trade and manufacturers names appear herein solely because they are considered essential to the object of this report.

This information is available in alternative accessible formats. To obtain an alternative format, contact the Office of Transportation Information, Kansas Department of Transportation, 700 SW Harrison, Topeka, Kansas 66603-3754 or phone (785) 296-3585 (Voice) (TDD).

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or the policies of the state of Kansas. This report does not constitute a standard, specification or regulation.

Abstract

KDOT engineers have expressed concern that the hydrologic methods in the current KDOT Design Manual (Volume I, Part C, 2011) may lead to over-sizing of drainage structures in Western Kansas. Some new structures designed by the current methods are much larger than the previous structures at these locations or existing structures directly upstream or downstream, where the older structures had no known history of overtopping. There are reasons to suspect that current methods may not be well suited to small watersheds in Western Kansas, particularly for areas with high soil permeability.

This report examines the applicability of KDOT's current hydrologic methods to Western Kansas and develops new Rational C values and flood-frequency regression equations for this region. In addition, KDOT's current hydrologic methods are compared with those of nearby state DOTs.

In order to develop new flood-frequency regression equations and recommendations for Rational C values for Western Kansas, we assembled a data set of all USGS gaging stations that met the following criteria: (1) at least 10 years of peak flow records, (2) watershed area less than $100 \mathrm{mi}^{2}$, (3) unregulated watersheds (no major lakes or reservoirs), and (4) watersheds within 100 miles of the Kansas border and west of 97.5° longitude. The resulting data set contains 156 stations, 62 of which are in Kansas.

Regional flood frequency analyses were performed on this data set using Generalize Least Squares regression in WREG 1.0. Soil permeability was found not to be a significant predictor variable. Regression equations were developed for Western Kansas, but our comparisons show that these equations are not a substantial improvement over existing regression equations. Based on an evaluation of available methods, we recommend the Extended Rational method for watershed areas $>640 \mathrm{ac}$ and $<30 \mathrm{mi}^{2}$ and the USGS four-parameter regression equation for watersheds $\geq 30 \mathrm{mi}^{2}$ in both Western and Eastern Kansas.

An analysis of Rational C values indicates that C values currently used for design in Western Kansas are too high for recurrence intervals below 100 years. New Rational C values for Western Kansas were developed and checked against regression methods for consistency. Our proposed C values for Western Kansas are lower than the current values for all recurrence

intervals below 100 years. We also propose certain adjustments to the Rational C values for Eastern Kansas. We recommend that urban open spaces and pervious surfaces within the right-of-way be considered equivalent to pasture/range rather than cropland in both Western and Eastern Kansas.

Acknowledgements

This project was supported by the Kansas Department of Transportation (KDOT) through the Kansas Transportation Research and New-Developments (K-TRAN) Program. James Richardson, P.E., of KDOT served as the project monitor. Brad Rognlie, P.E., and Michael Orth, P.E., of KDOT also provided valuable guidance. The authors sincerely appreciate the contributions of these individuals.

Table of Contents

Abstract v
Acknowledgements vii
List of Tables X
List of Figures xii
Chapter 1: Introduction 1
Chapter 2: Review of Current Hydrologic Methods 7
2.1 Selection of Methods 7
2.2 Rational Method 8
2.2.1 Drainage-Area Limitations 8
2.2.2 Rational Runoff Coefficients 8
2.3 Regression Methods 12
Chapter 3: Development of Data Set 15
3.1 Selection of Stations 15
3.2 Watershed Characteristics 15
3.2.1 Watershed Area, A 16
3.2.2 Main Channel Length, L 18
3.2.3 Main Channel Slope, Sl 18
3.2.4 Basin Shape Factor, Sh 18
3.2.5 Soil Permeability, SP_{12} and $\mathrm{SP}_{\text {full }}$. 19
3.2.6 Time of Concentration, t_{c} 19
3.2.7 Representative Rainfall Intensity, i_{T} 21
3.2.8 Mean Annual Precipitation, MAP 22
3.3 Flood Frequency for Individual Stations 23
3.4 Rational Runoff Coefficients for Individual Stations 23
Chapter 4: Regional Flood-Frequency Analysis 24
4.1 Background 24
4.2 Examination of Predictor Variables 25
4.3 Generalized Least Squares (GLS) Regression 28
4.4 Comparison with Other Hydrologic Methods 29
4.5 Recommendations 32
Chapter 5: Rational Runoff Coefficients 34
5.1 Regional Analysis of Rational Runoff Coefficients 34
5.2 Comparison of Rational Method and Regression Methods 36
5.3 Recommended Runoff Coefficients for Western Kansas 40
5.4 Recommended Runoff Coefficients for Eastern Kansas 45
Chapter 6: Conclusions and Summary of Recommendations 46
References 47
Appendix 50

List of Tables

TABLE 1.1 Comparison of 100-Year Rainfall Depths for Locations in Western and Eastern Kansas 5
TABLE 1.2 Comparison of Flood Quantiles for Hypothetical $10 \mathrm{mi}^{2}$ Watersheds in Western and Eastern Kansas 6
TABLE 2.1 Guidelines for Selection of Hydrologic Methods in KDOT Design Manual 7
TABLE 2.2 Drainage-Area Limitations on Use of Rational Method 8
TABLE 2.3 Recommended Rational Runoff Coefficients in KDOT Design Manual 9
TABLE 2.4 Rational Runoff Coefficients Used by Oklahoma DOT 10
TABLE 2.5 Rational C Values for Developed Areas Used by Nebraska Department of Roads 11
TABLE 2.6 Rational C Values for Undeveloped Areas Used by Nebraska Department of Roads 11
TABLE 2.7 Rational C Values Used by Colorado DOT 12
TABLE 3.1 Watershed Characteristics Considered in this Study 18
TABLE 4.1 Correlation Matrix for Prediction of Q_{25} (Cells Highlighted in Yellow Indicate Statistically Significant Correlation Values with 95\% Confidence) 27
TABLE 4.2 Correlation Matrix for Potential Predictor Variables from PCA (Cells Highlighted in Yellow Indicate Statistically Significant Correlation Values with 95\% Confidence) 28
TABLE 4.3 New HWK Regression Equations for Watersheds < $100 \mathrm{mi}^{2}$ in Western Kansas 29
TABLE 4.4 Comparison of Standard Model Error of Prediction for HWK and USGS Regression Equations 30
TABLE 5.1 Median Values of Rational C for All Stations in the RFF Data Set 34
TABLE 5.2 Median Values of Rational C for Stations in Eastern and Western Kansas 35
TABLE 5.3 Watersheds for Comparison of Discharge Estimates by Different Methods 36
TABLE 5.4 Comparison of Discharges from Regional Regression Equations and Rational Method with Current C Values 37
TABLE 5.5 Proposed Runoff Coefficients for Western Kansas 41
TABLE 5.6 Comparison of Discharges from Regional Regression Equations and Rational Method with Proposed C Values 42
TABLE 5.7 Recommended Runoff Coefficients for Eastern Kansas 45
TABLE A. 1 Station Information for Selected Peak-Flow Records 50
TABLE A. 2 Watershed Characteristics 54
TABLE A. 3 Representative Rainfall Intensities 58
TABLE A. 4 Flood Quantiles from Frequency Analyses for Individual Stations 62
TABLE A. 5 Rational Runoff Coefficients from Frequency Analyses for Individual Stations 66

List of Figures

FIGURE 1.1 Western and Eastern Hydrologic Regions of Kansas 2
FIGURE 1.2 Mean Annual Precipitation (inches), Kansas 3
FIGURE 1.3 Mean Annual Lake Evaporation (Inches), Kansas 3
FIGURE 1.4 Generalized Physiographic Regions of Kansas 4
FIGURE 1.5 Generalized Soil Permeability, Kansas and Surrounding Region 4
FIGURE 3.1 Locations of Selected Stations and Mean Annual Precipitation (Inches) 17
FIGURE 3.2 Mean Soil Permeability (Inches/Hr) of Top Twelve Inches of Soil. 20
FIGURE 3.3 Mean Soil Permeability (Inches/Hr) of Full Depth of Soil 22
FIGURE 4.1 Scatter Plot of SP_{12} vs. $\mathrm{SP}_{\text {full }}$ with Linear Trendline 26
FIGURE 4.2 Comparison of Q_{25} Estimates by Three Methods 31
FIGURE 4.3 Comparison of Q_{100} Estimates by Three Methods 31
FIGURE 4.4 Evaluation of Recommended Methods for Estimation of Q_{25} in Western Kansas. 32
FIGURE 4.5 Evaluation of Recommended Methods for Estimation of Q_{100} in Western
Kansas 33
FIGURE 5.1 Relationship between C10 and Soil Permeability 35
FIGURE 5.2 Discharges for Station 06873300 from Regional Regression Equations and Rational Method with Current C Values 38
FIGURE 5.3 Discharges for Station 06858700 from Regional Regression Equations and Rational Method with Current C Values 38
FIGURE 5.4 Discharges for Station 06848200 from Regional Regression Equations and Rational Method with Current C Values 39
FIGURE 5.5 Discharges for Station 06867800 from Regional Regression Equations and Rational Method with Current C Values 39
FIGURE 5.6 Discharges for Station 0687330 from Regional Regression Equations and Rational Method with Proposed C Values 43

FIGURE 5.7 Discharges for Station 06858700 from Regional Regression Equations and Rational Method with Proposed C Values43

FIGURE 5.8 Discharges for Station 06848200 from Regional Regression Equations and Rational Method with Proposed C Values44

FIGURE 5.9 Discharges for Station 0687800 from Regional Regression Equations and Rational Method with Proposed C Values 44

Chapter 1: Introduction

KDOT engineers have expressed concern that the hydrologic methods in the current KDOT Design Manual (Volume I, Part C, 2011) may lead to over-sizing of drainage structures in Western Kansas. Some new structures designed by the current methods are much larger than the previous structures at these locations or existing structures directly upstream or downstream, where the older structures had no known history of overtopping. There are reasons to suspect that current methods may not be well suited to small watersheds in Western Kansas, particularly for areas with high soil permeability. The KDOT Design Manual specifies the Rational method for unregulated streams with drainage areas under 640 acres and regional regression equations for unregulated rural streams with larger drainage areas. The Design Manual provides recommended Rational C values for use throughout the State. The recommended values do not account for differences in climate and soil permeability. The Design Manual states that these C values "may be somewhat conservative for western Kansas."

This report examines the applicability of KDOT's current hydrologic methods to Western Kansas and develops new Rational C values and flood-frequency regression equations for this region. KDOT's current hydrologic methods are compared with those of nearby state DOTs. We attempt to develop new regional flood-frequency equations specifically for Western Kansas, and compare these equations with the current statewide equations. We also investigate the issue of Rational runoff coefficients for small watersheds and propose new C values for Western and Eastern Kansas.

In this report, Western Kansas and Eastern Kansas are defined as the western and eastern hydrologic regions shown in Figure 1.1, from the KDOT Design Manual. The Design Manual recommends different storm durations and antecedent moisture conditions for simulation of floods in the western and eastern regions, based on research by McEnroe and Gonzalez (2003).

In Kansas, as in other Plains states, hydrologic characteristics vary greatly from east to west. Figures 1.2 and 1.3 show the patterns of mean annual precipitation and lake evaporation across Kansas. Southeastern Kansas receives two-and-a-half times as much total precipitation as far Western Kansas, while lake evaporation is approximately 50% higher in the southwest than in the northeast. Soil permeability is significantly higher, on average, in the western region than in
the eastern region, as can be seen in Figure 1.5, the generalized soil permeability map for Kansas (Rasmussen and Perry 2000). The spatial pattern of soil permeability is quite complex, particularly in the southwestern region. Soil permeability is generally highest in the Arkansas River Lowlands physiographic region, defined in Figure 1.4, and in alluvial river valleys throughout the state.

FIGURE 1.1
Western and Eastern Hydrologic Regions of Kansas

(Source: Rasmussen and Perry 2000)
FIGURE 1.2
Mean Annual Precipitation (inches), Kansas

(Source: Farnsworth et al. 1982)
FIGURE 1.3
Mean Annual Lake Evaporation (Inches), Kansas

(Source: Kansas Geological Survey)
FIGURE 1.4
Generalized Physiographic Regions of Kansas

(Source: Rasmussen and Perry, 2000)
FIGURE 1.5
Generalized Soil Permeability, Kansas and Surrounding Region

Rainfall depths for specific durations and recurrence intervals also vary geographically, but to a lesser degree than mean annual precipitation. T-year rainfalls for short durations exhibit much less geographically variability than T-year rainfalls for longer durations. Table 1.1 compares 100-year rainfall depths for three different durations in Rawlins County (northwest Kansas, MAP $=20$ ") and Allen County (southeast Kansas, MAP $=40$ "). For the 5 -minute duration, the difference is minimal.

TABLE 1.1
Comparison of 100-Year Rainfall Depths for Locations in Western and Eastern Kansas

Location	100 -year, 24 -hour rainfall (in.)	100 -year, 1-hour rainfall (in.)	100 -year, 5-minute rainfall (in.)
Rawlins Co. (MAP = 20")	5.50	3.30	0.83
Allen Co. (MAP = 40")	8.30	3.65	0.85

Flood characteristics for watersheds of a given size vary tremendously across Kansas as a consequence of the differences in climate, topography, soils and vegetation. The USGS statewide flood-frequency equations for watersheds under $30 \mathrm{mi}^{2}$ (Rasmussen and Perry 2000) can be used to assess the generalized effects of the factors that vary geographically. The two inputs to these equations are drainage area and mean annual precipitation. Mean annual precipitation serves as a surrogate for all relevant factors other than drainage area. Table 1.2 compares 2 -year and 100year discharges for hypothetical $10-\mathrm{mi}^{2}$ watersheds in Rawlins County (MAP $=20 \mathrm{in}$.) and Allen County (MAP $=40 \mathrm{in}$.) computed with the USGS equations. This comparison provides support to some general observations about flood frequency relationships in western and eastern Kansas. First, the relative differences in flood quantiles from west to east exceed the relative differences in mean annual precipitation. Second, the geographic effects are more pronounced for the more frequent floods than for extreme floods. Third, flood frequency curves (discharge versus recurrence interval) have steeper slopes in Western Kansas than in Eastern Kansas.

TABLE 1.2
Comparison of Flood Quantiles for Hypothetical $10 \mathrm{mi}^{2}$ Watersheds in Western and Eastern Kansas

Location	2-year discharge* (cfs)	100 -year discharge* (cfs)
Rawlins Co. (MAP $=$ 20")	233	4040
Allen Co. (MAP $=40 ")$	1658	9865

* from USGS regression equations for Kansas
(Rasmussen and Perry, 2000)

Chapter 2: Review of Current Hydrologic Methods

2.1 Selection of Methods

The KDOT Design Manual, Volume I, Part C (2011) provides the following guidelines for selection of hydrologic methods for calculation of design discharges:

TABLE 2.1
Guidelines for Selection of Hydrologic Methods in KDOT Design Manual, Volume I, Part C (2011)

Method	Limitations and Uses
Rational method	Drainage area ≤ 640 ac Unregulated stream No analysis of detention storage at structure
Extended Rational method	Drainage areas >640 acres and $\leq 30 \mathrm{mi}^{2}$ Unregulated stream No analysis of detention storage at structure
Three-variable regression method	Drainage areas >640 acres and $\leq 30 \mathrm{mi}^{2}$ Unregulated stream No analysis of detention storage at structure
USGS regression equations for Kansas	Rural areas Drainage area >640 ac Unregulated stream No analysis of detention storage at structure Generally used for bridge-size structures only
Flood hydrograph simulation (by specified procedures)	Any case in which the other two methods are not applicable, or consideration of timing and storage effects is warranted

These methods are used to estimate design discharges with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The Extended Rational and three-variable regression methods are closely related methods that yield similar results (McEnroe and Young 2007). These two methods, like the USGS regression equations, apply only to watersheds that are largely rural. This limitation should be added to the KDOT guidelines.

This report investigates the suitability of the Rational and regression methods for use in Western Kansas. KDOT's flood-hydrograph simulation procedures, which are not considered here, already recommend different calibrated inputs for the Eastern and Western Kansas based on the research of McEnroe and Gonzalez (2003).

2.2 Rational Method

2.2.1 Drainage-Area Limitations

The Rational method is generally considered an appropriate hydrologic method for small unregulated watersheds. However, there is no general agreement on an upper limit for drainage area. Table 2.2 compares the upper limits specified by KDOT and the transportation departments of surrounding states.

TABLE 2.2
Drainage-Area Limitations on Use of Rational Method

State DOT	Upper limit on drainage area for Rational method
Kansas Department of Transportation	640 acres
Nebraska Department of Roads	640 acres
Colorado Department of Transportation	160 arres
Oklahoma Department of Transportation	640 acres
Missouri Department of Transportation	200 acres

In our view, a drainage area of 640 acres is an appropriate dividing line between the Rational method and the regression methods. The regression methods cannot be expected to provide reliable discharge estimates for watersheds much smaller than 640 acres because so few gaged watersheds have drainage areas in this lower range, particularly in Western Kansas.

2.2.2 Rational Runoff Coefficients

The runoff coefficient (C value) is a key input to design-discharge estimation by the Rational method. There is no generally accepted method for determination of runoff coefficients. Different engineering organizations provide different guidelines. Land use/cover is generally considered the most important factor. Other factors considered by some organizations include recurrence interval, land slope and soil type (e.g., clayey or sandy). The runoff coefficient is generally assumed to be independent of climatic characteristics. However, our previous research on larger watersheds in Kansas showed that C values are strongly related to mean annual precipitation (McEnroe and Young 2007).

The C values currently recommended by KDOT are shown in Table 2.3. The recommended values, which apply statewide, vary with land use and recurrence interval. The following statement in the KDOT Design Manual allows the designer some leeway to account for other factors:

The designer may opt to use slightly higher or lower runoff coefficients to account for unusual local conditions. Higher runoff coefficients might be appropriate for soils with very low permeability on steep slopes or thin soils with little water-storage capacity. Lower runoff coefficients might be appropriate for soils with very high permeability and for very flat terrain. The recommended runoff coefficients may be somewhat conservative for western Kansas, where the climate is relatively dry.

TABLE 2.3
Recommended Rational Runoff Coefficients in KDOT Design Manual

Land Use	Rational runoff coefficient, C			
	$2-10 \mathrm{yr}$	25 yr	50 yr	100 yr
Impervious surfaces	0.95	0.95	0.95	0.95
Pervious surfaces within highway right-of-way	0.50	0.55	0.58	0.60
Urban open space (lawns, parks, etc.)	0.50	0.55	0.58	0.60
Cultivated agricultural land	0.50	0.55	0.58	0.60
Pasture or range	0.40	0.44	0.46	0.48
Woods	0.30	0.33	0.35	0.36

The KDOT table includes only two urban land-use categories: urban open space and impervious surfaces. The composite C value for any urban watershed can be computed as an average of the values for these two categories, weighted by the percentages of pervious and impervious area.

It is interesting to compare KDOT's recommended C values with those of the neighboring state transportation departments, although these comparisons do not reveal which values are more nearly correct. Table 2.4 through 2.7 show the C values recommended by the Oklahoma Department of Transportation (ODOT), the Nebraska Department of Roads (NDOR), and the Colorado Department of Transportation (CDOT).

ODOT's recommendations are the least specific, providing ranges of C values for different land uses, with no mention of other relevant factors such as recurrence interval. (The Rational formula used by ODOT does not include a separate adjustment factor for recurrence interval.) The ranges in Table 2.4 are applied throughout Oklahoma. Most of ODOT's ranges encompass KDOT's recommended C values (Table 2.2). KDOT's C values for impervious surfaces and woods slightly exceed ODOT's upper limits.
TABLE 2.4
Rational Runoff Coefficients Used
by Oklahoma DOT

	Rational
Surface type	C
Paved	$0.7-0.9$
Gravel	$0.4-0.6$
Cut or fill slope	$0.5-0.7$
Grassed areas	$0.1-0.7$
Residential	$0.3-0.7$
Woods	$0.1-0.3$
Cultivated	$0.2-0.6$

The Nebraska Department of Roads specifies C values based on land use/cover, land slope and recurrence interval. Tables 2.5 and 2.6 show NDOR's statewide recommendations for developed and undeveloped areas. NDOR's recommendations differ from KDOT's recommendations in several ways. First, NDOR's C values for all land covers except forest/woodlands are somewhat lower than KDOT's recommendations. Second, in NDOR's tables, $\mathrm{C}_{2}<\mathrm{C}_{5}<\mathrm{C}_{10}$ (where $\mathrm{C}_{2}, \mathrm{C}_{5}$ and C_{10} are the C values for recurrence intervals of 2,5 and 10 years), whereas KDOT uses the same C values for recurrence intervals of 2,5 and 10 years. Third, NDOR's table for developed areas breaks out grass areas by condition. The C values for urban grass areas in good, fair and poor condition are similar to those for forest/woodlands, pasture/range and cultivated land, respectively. In KDOT's table, the C values for urban open space are the same as for cultivated land. Fourth, NDOR's tables break out C values by land slope, with significantly higher C values for steeper slopes. KDOT's recommended C values are independent of land slope.

TABLE 2.5
Rational C Values for Developed Areas Used by Nebraska Department of Roads

Character of Surface	Return Period (Years)						
	$\mathbf{2}$	5	10	$\mathbf{2 5}$	50	100	500
Asphalt	0.73	0.77	0.81	0.86	0.90	0.95	1.00
Concrete/roof	0.75	0.80	0.83	0.88	0.92	0.97	1.00
Grass Areas (lawns, parks, etc.)							
Poor Condition (grass cover less than 50\% of the area)							
Flat, 0-2\% *	0.32	0.34	0.37	0.40	0.44	0.47	0.58
Average, 2-7\% *	0.37	0.40	0.43	0.46	0.49	0.53	0.61
Steep, over 7\% *	0.40	0.43	0.45	0.49	0.52	0.55	0.62
Fair Condition (grass cover on 50\% to 75\% of the area)							
Flat, 0-2\% *	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Average, 2-7\% *	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Steep, over 7\% *	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Good Condition (grass cover more than 75\% of the area)							
Flat, 0-2\% *	0.21	0.23	0.25	0.29	0.32	0.36	0.49
Average, 2-7\% *	0.29	0.32	0.35	0.39	0.42	0.46	0.56
Steep, over 7\% *	0.34	0.37	0.40	0.44	0.47	0.51	0.58

* Slopes refer to watershed slope not channel slope.

TABLE 2.6
Rational C Values for Undeveloped Areas Used by Nebraska Department of Roads

Character of Surface	Return Period (Years)						
	2	5	10	25	50	100	500
Cultivated Land							
Flat, 0-2\%	0.31	0.34	0.36	0.40	0.43	0.47	0.57
Average, 2-7\%	0.35	0.38	0.41	0.44	0.48	0.51	0.60
Steep, over 7\%	0.39	0.42	0.44	0.48	0.51	0.54	0.61
Pasture/Range							
Flat, 0-2\%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Average, 2-7\%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Steep, over 7\%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Forest/Woodlands							
Flat, 0-2\%	0.22	0.25	0.28	0.31	0.35	0.39	0.48
Average, 2-7\%	0.31	0.34	0.36	0.40	0.43	0.47	0.56
Steep, over 7\%	0.35	0.39	0.41	0.45	0.48	0.52	0.58

The Colorado DOT's table of C values (Table 2.7) was taken from the design manual of the Urban Drainage and Flood Control District of the Denver metropolitan area. This table provides guidance mainly for urban land uses. The recommended C values vary with recurrence interval, but no values are listed for recurrence intervals of 25 or 50 years. C values are provided for paved streets, gravel streets, lawns with sandy soil, lawns with clayey soil, and roofs.

Composite C values are also provided for various urban land uses based on stated impervious percentages and other unstated assumptions. CDOT's C values are generally lower than KDOT's values. CDOT uses a C_{2} value of zero for lawns with sandy soil. CDOT's table provides almost no guidance for rural areas. All undeveloped and agricultural areas (whether cultivated land, pasture/range or woodland) are assumed equivalent to urban lawns.

TABLE 2.7
Rational C Values Used by Colorado DOT

Land Use or Surface Characteristics	Percent Impervious		Frequency		
		2	5	10	100
Business:					
Commercial Areas	95	0.87	0.87	0.88	0.89
Neighborhood Areas	70	0.60	0.65	0.70	0.80
Residential:					
Single-Family		0.40	0.45	0.50	0.60
Multi-Unit (detached)	50	0.45	0.50	0.60	0.70
Multi-Unit (attached)	70	0.60	0.65	0.70	0.80
1/2Acre Lot or Larger		0.30	0.35	0.40	0.60
Apartments	70	0.65	0.70	0.70	0.80
Industrial:					
Light Areas	80	0.71	0.72	0.76	0.82
Heavy Areas	90	0.80	0.80	0.85	0.90
Parks, Cemeteries:	7	0.10	0.10	0.35	0.60
Playgrounds:	13	0.15	0.25	0.35	0.65
Schools:	50	0.45	0.50	0.60	0.70
Railroad Yard Areas:	40	0.40	0.45	0.50	0.60
Undeveloped Areas:					
Historic Flow Analysis, Greenbelt, Agricultural:	2		See I		
Offisite Flow Analysis: (when landuse not defined)	45	0.43	0.47	0.55	0.65
Streets:					
Paved	100	0.87	0.88	0.90	0.93
Gravel	13	0.15	0.25	0.35	0.65
Drive and Walks,	96	0.87	0.87	0.88	0.89
Roofs:	90	0.80	0.85	0.90	0.90
Lawns, Sandy Soil:	0	0.00	0.01	0.05	0.20
Lawns, Clayey Soil:	0	0.05	0.10	0.20	0.40

Note: These Rational Formula coefficients may not be valid for large basins.
Source: Urban Storm Drainage Criteria Manual (UDFCD, 2001).

2.3 Regression Methods

KDOT uses three sets of regression equations to compute design discharges for unregulated rural streams with drainage areas over one square mile: the Extended Rational
equations, three-variable regression equations, and USGS regression equations. All three sets of regression equations are applicable statewide.

The Extended Rational and three-variable regression equations were fitted to flood quantile estimates and watershed characteristics for 72 USGS gaging stations with drainage areas under $30 \mathrm{mi}^{2}$ and record lengths of 20 years or longer. These two sets of equations use the same inputs. The T-year discharge is estimated from the drainage area, the mean annual precipitation over the watershed, and the T-year rainfall intensity for a duration equal to the watershed's time of concentration. The time of concentration is computed from the length and average slope of the main channel using an equation fitted to data for rural watersheds in Kansas (McEnroe and Zhao 2000). Therefore these methods actually incorporate information on five watershed characteristics: drainage area, mean annual precipitation, rainfall intensity, channel length and average channel slope. The Extended Rational equations resemble the common Rational equation in that the discharge is directly proportional to both drainage area and rainfall intensity. Regression equations relate the runoff coefficients to mean annual precipitation. Neither soil permeability nor channel slope was found to be a significant explanatory variable at any recurrence interval. The three-variable equations differ from the Extended Rational equations only in that the exponents on drainage area and rainfall intensity were fitted to the data rather than set to a value of one. The exponents on these terms in the three-variable equations do not differ greatly from one, which supports the validity of the general form of the Rational equation.

The most recent USGS flood-frequency report for Kansas (Rasmussen and Perry 2000) includes two sets of statewide regression equations: one set for drainage areas under $30 \mathrm{mi}^{2}$ and another set for larger drainage areas. The equations for drainage areas $\geq 30 \mathrm{mi}^{2}$ have four inputs: contributing drainage area, mean annual precipitation, average channel slope, and generalized soil permeability (Figure 1.4). The USGS regression equations for the drainage areas under 30 mi^{2}, which are seldom used by KDOT, have considerably larger standard errors of prediction than the equations for the larger drainage areas. The regression equations for the smaller drainage areas have only two inputs: drainage area and mean annual precipitation. The USGS found that soil permeability and channel slope were not significant as explanatory variables for watersheds under $30 \mathrm{mi}^{2}$.

The Oklahoma Department of Transportation, the Colorado Department of Transportation and the Nebraska Department of Roads all use regression equations to compute design discharges for unregulated rural streams with drainage areas that exceed their limitations on the Rational method. ODOT and CDOT use the applicable USGS regression equations (Lewis 2010; Capesius and Stephens 2009). NDOR uses a set of regression equations developed for NDOR by the University of Nebraska (Cordes and Hotchkiss 1993) rather than the most recent USGS regression equations (Soenksen et al. 1999). The USGS regression equations for Oklahoma are statewide equations with three inputs: contributing drainage area, mean annual precipitation and average channel slope. Soil permeability was considered as a possible explanatory variable but was found to be non-significant. The USGS regression equations for Colorado are regional rather than statewide equations. The USGS has divided Colorado into five hydrologic regions and developed equations for each region. The Plains Region of Colorado adjoins the western border of Kansas. The USGS regression equations for the Plains Region have two inputs: drainage area and the 100-year, 6-hour rainfall depth. NDOR's regression equations are also regional rather than statewide. Region 1 (of five) adjoins most of the northern border of Western Kansas. The regression equations for Region 1 have two inputs: contributing drainage area and mean annual precipitation.

Chapter 3: Development of Data Set

3.1 Selection of Stations

The goal of this study was to develop improved hydrologic methods for small watersheds in Western Kansas, particularly in areas of high soil permeability. From previous studies, it was clear that the number of gaged watersheds in Western Kansas would be insufficient to develop meaningful regression equations. For this reason, we included USGS-gaged watersheds from neighboring states in this study. The search criteria for the stations in our data set were: (1) at least 10 years of peak flow records, (2) watershed area less than $100 \mathrm{mi}^{2}$, (3) unregulated watersheds (no major lakes or reservoirs), and (4) watersheds within 100 miles of the Kansas border and west of 97.5° longitude. Stations east of 97.5° longitude Kansas were excluded so that the resulting regional flood frequency equations would be representative of conditions predominant in the western part of the state. These conditions include lower mean annual rainfall, higher soil permeability, lower channel slopes, and higher mean annual evapotranspiration.

Our data set contains 156 stations: 62 in Kansas, 56 in Nebraska, 19 in Oklahoma, 14 in Colorado, four in New Mexico and one in Texas. Table A. 1 lists the station names and other basic information. Figure 3.1 shows the locations of these stations along with contours of mean annual precipitation.

3.2 Watershed Characteristics

The hydrologic methods of interest in this study are regional flood frequency (RFF) analysis and the Rational method. The goal of RFF analysis is to develop equations to predict flood quantiles $\left(\mathrm{Q}_{\mathrm{T}}\right)$ as functions of watershed characteristics. Table 3.1 lists the watershed characteristics obtained for this study and used subsequently in the RFF analysis. A brief description of each characteristic, along with the method used for its determination, follows. The values of these characteristics for all stations in the data set are listed in tables A. 2 and A.3.

3.2.1 Watershed Area, A

We originally planned to use published USGS drainage areas for all watersheds in this study. However, we found inconsistencies in reported drainage areas for many watersheds between the USGS's NWIS system and the various state-level RFF studies performed by the USGS. These inconsistencies are understandable; watershed delineation in areas with low relief can be challenging and the resulting delineation often depends on the source of topographic data. As a result, we found it necessary to delineate all 156 watersheds using a consistent and repeatable methodology.

We determined the watershed area for each USGS gage using automated watershed delineation facilitated by ArcHydro 1.4 in ArcGIS 9.3 (Djokic 2008). Each watershed was delineated using three arc-second digital elevation models (DEMs) developed and distributed by the USGS as part of the National Elevation Dataset (NED) (Gesch 2007; Gesch et al. 2002). These DEMs have a grid spacing of three arc-seconds, which is approximately 10 m depending on latitude. Higher-resolution DEMs are available for a number of the watersheds included in this analysis, but it is important to use a consistent resolution, particularly for the determination of main channel length and channel slope. All DEMs were projected into a Universal Transverse Mercator (UTM) map projection (zone 13-15 depending on longitude) based on the North American Datum of 1983 (NAD83) prior to analysis in ArcHydro.

FIGURE 3.1
Locations of Selected Stations and Mean Annual Precipitation (Inches)

TABLE 3.1
Watershed Characteristics Considered in this Study

Characteristic	Units	Description
A	mi^{2}	Total watershed area (including non-contributing areas)
L	mi	Length of the main channel extended to the watershed boundary.
Sl	$\mathrm{ft} / \mathrm{mi}$	Slope of the main channel, measured between points 10% and 85% along the channel from the watershed outlet to the drainage divide
Sh	none	Basin shape factor $\left(\mathrm{L}^{2} / \mathrm{A}\right)$
SP_{12}	$\mathrm{in} . / \mathrm{hr}$	Mean soil permeability of the top 12 inches of soil.
$\mathrm{SP}_{\text {full }}$	$\mathrm{in} . / \mathrm{hr}$	Mean soil permeability of the entire soil profile T_{c}
hr	Watershed time of concentration	
i_{T}	$\mathrm{in} . / \mathrm{hr}$	Rainfall intensity for duration $=\mathrm{T}_{\mathrm{c}}$ and recurrence interval T
MAP	in.	Mean annual precipitation

3.2.2 Main Channel Length, L

The main channel length for each watershed was computed with ArcHydro 1.4. The main channel length is defined as the longest flow path from the watershed outlet to the drainage divide. As noted above, it is important to use a consistent grid cell size when delineating channel length using GIS tools. Our analysis found that DEMs with smaller grid cell sizes yield significantly longer channel measurements.

3.2.3 Main Channel Slope, SI

ArcHydro 1.4 was also used to find the slope of the main channel for each watershed. The standard USGS definition of channel slope was used in our investigation. This definition computes the slope (in feet per mile) between points 10% and 85% of the way up the channel as measured from the watershed outlet to the drainage divide.

3.2.4 Basin Shape Factor, Sh

The basin shape factor is a dimensionless indicator of how elongated a watershed is relative to its drainage area. The equation for shape factor is given in Eq. 3-1. It should be noted
that the basin shape factor used in the Nebraska USGS RFF report (Soenksen et al. 1999) uses a different definition than the one used here.

$$
S h=\frac{L^{2}}{A}
$$

Equation 3.1

3.2.5 Soil Permeability, $S P_{12}$ and $S P_{\text {full }}$

Previous RFF studies for Kansas have obtained soil permeabilities from Figure 1.5, the map produced by the USGS (Rasmussen and Perry, 2000). A digital GIS version of the USGS map is available for download through the Kansas Data Access and Support Center (DASC, www.kansasgis.org). The soil permeability map available through DASC does not extend past the Kansas border.

In order to determine soil permeability in a consistent manner for all 156 watersheds, we generated soil permeability maps that cover the entire study area. These permeability maps were generated using the U.S. General Soil Map (STATSGO2) produced by the Natural Resources Conservation Service (NRCS) (NRCS 2012). The STATSGO2 dataset includes a representative hydraulic conductivity for each soil horizon for each soil component. These representative hydraulic conductivities were averaged with respect to depth for each soil component and spatially for each soil map unit (made up of several soil components). Two separate soil maps were generated. Figure 3.2 shows the mean soil hydraulic conductivity computed for the top 12 inches of soil. Figure 3.3 shows the soil permeability averaged over the full depth of soil, as was done for the USGS map. These two maps were used in ArcGIS to compute two values of spatially averaged hydraulic conductivity for each watershed (SP_{12} and $\mathrm{SP}_{\text {full }}$).

3.2.6 Time of Concentration, t_{c}

The time of concentration, t_{c}, is the time required for runoff to travel from the most remote point in the watershed to the watershed outlet during a storm event. Time of concentration is an important measure of how quickly runoff reaches the watershed outlet. The t_{c}
for each watershed was estimated using the KU-KDOT equation for rural watersheds (McEnroe and Zhao, 1999):

$$
\mathbf{t}_{\mathbf{c}}=0.176\left(\frac{\mathbf{L}}{\sqrt{\mathbf{S I}}}\right)^{\mathbf{0 . 6 6}}
$$

Equation 3.2
in which

$$
\mathrm{t}_{\mathrm{c}}=\text { time of concentration }(\mathrm{hr})
$$

$\mathrm{L}=$ length of main channel, extended to the drainage divide (mi)
$\mathrm{Sl}=$ average slope of main channel ($\mathrm{ft} / \mathrm{ft}$)

FIGURE 3.2
Mean Soil Permeability (Inches/Hr) of Top Twelve Inches of Soil

The KU-KDOT equation was developed from an analysis of rainfall and streamflow records for 20 rural watersheds in Kansas ranging in size from 0.81 to $10.0 \mathrm{mi}^{2}$. Although many of the watersheds in this study fall outside the spatial and size range of the basins used to generate Equation 3.2, we think that this equation is still the best available. It was important to use one consistent equation for t_{c} for all of the watersheds in the data set.

3.2.7 Representative Rainfall Intensity, i_{T}

The representative rainfall intensity for a given recurrence interval (iT, where T designates the recurrence interval) is the T-year rainfall intensity for a duration equal to tc. The iT values for each watershed were determined for recurrence intervals of $2,5,10,25,50$, and 100 years. For basins in Kansas, Nebraska, and Oklahoma, we digitized the rainfall atlas maps from TP-40 (Hershfield 1961) and HYDRO-35 (Frederick et al. 1977), converted the contours to grid format, and determined the rainfall depths for each recurrence interval at the centroid of each watershed. Interpolation procedures described in TP-40 and HYDRO-35 were used to interpolate between recurrence intervals (where necessary) and between durations. For watersheds in New Mexico, rainfall intensities were obtained via NOAA Atlas 14 (Bonnin et al. 2006) using the online tool available online through the National Weather Service (NWS) Hydrometeorological Design Studies Center (HDSC) Precipitation Frequency Data Server (PFDS) (http://hdsc.nws.noaa.gov/hdsc/pfds/). Rainfall intensities for the Colorado watersheds were determined at the centroids of the watersheds from the maps and interpolation formulas in NOAA Atlas 2 (Miller et al. 1973).

FIGURE 3.3
Mean Soil Permeability (Inches/Hr) of Full Depth of Soil

3.2.8 Mean Annual Precipitation, MAP

The mean annual precipitation for each watershed was extracted from a digital version of Figure 3.1. This map was generated using the USGS mean annual precipitation map for Kansas, shown in Figure 1.2 (Rasmussen and Perry, 2000). The values of MAP in Figures 1.2 and 3.1 are based on rain-gage data collected during the period 1961-1990 (NOAA climate normals are computed over a time span of three decades). More recent climate normal are available (19812010); however, we chose to use the MAP values already in use in the KDOT drainage manual.

The MAP contours from Rasmussen and Perry (2000) were extended further north, south, and west to cover all of the watersheds in the study area by overlaying the USGS contours on a MAP contour map generated from the PRISM rainfall mapping project (Daly et al. 1994; Daly et al. 1997).

3.3 Flood Frequency for Individual Stations

A flood frequency analysis was performed for each gage record according to Bulletin 17B methods (Interagency Advisory Committee on Water Data, 1981) using the HEC-SSP 2.0 (Statistical Software Package) program developed by the U.S. Army Corps of Engineers (USACE) Hydraulic Engineering Center (HEC). Documentation for the HEC-SSP program can be found in Brunner and Fleming (2010).

HEC-SSP 2.0 automatically downloads peak flow data from the USGS National Water Information System (NWIS) (USGS 2012) for specified gage stations. The only input required from the user is the regional skew coefficient, which is used by HEC-SSP to compute the weighted skew coefficient. There are two ways to obtain the regional skew coefficient for a particular watershed. First, specific regional skew coefficient maps or equations have been developed for some states. Rassmussen and Perry (2000) present a regional skew-coefficient equation for watersheds located in Kansas. Soenksen (1999) provides a map of regional skew coefficients for Nebraska, and Lewis (2010) provides a map for Oklahoma. Second, in locations where no specific map or equation has been developed, the national map can be used (Interagency Advisory Committee 1981). Regional skew coefficients for watersheds in Colorado and New Mexico were obtained from the national map.

Flood quantiles were computed for recurrence intervals of 2, 5, 10, 25, 50 and 100 years. Table A. 4 presents these values for all stations in the data set.

3.4 Rational Runoff Coefficients for Individual Stations

Rational runoff coefficients for recurrence intervals of $2,5,10,25,50$ and 100 years were computed for all stations. From the Rational formula, the runoff coefficient for a given recurrence interval, C_{T}, is equal to $\mathrm{Q} /\left(\mathrm{A} \cdot \mathrm{i}_{\mathrm{T}}\right)$. Table A .5 presents the computed C_{T} values.

Chapter 4: Regional Flood-Frequency Analysis

4.1 Background

The goal of regional flood frequency (RFF) analysis is to develop a set of equations to predict flood quantiles $\left(\mathrm{Q}_{\mathrm{T}}\right)$ as functions of watershed characteristics. Equations for RFF analysis are usually developed using least-squares multiple linear regression (MLR) on the logtransformed values of the flood quantiles (the dependent, or response variable) and the watershed characteristics (the independent, or predictor variables).

One important assumption of MLR is that the regression residuals (the differences between the observed and predicted dependent variable) must be independent of each other and identically distributed (the probability density function for each residual is the same). In RFF analysis, there are several factors that might cause this assumption to be violated. First, the estimate of the flood quantile for a particular watershed is highly uncertain, and the degree of uncertainty is dependent on the length of the gage record. MLR gives each data point equal weight in the RFF analysis, regardless of whether the record length is 10 years or 100 years. Second, gage records do not all cover the same period of time. This introduces a potential bias in RFF analysis. For example, if a gage was operated for a 10 -year period, and that period happened to be especially eventful (several large floods) due to an underlying climate cycle, climate trend or just randomness, that gage would bias the results of the RFF analysis upwards given year for these watersheds may even be generated by the same storm events. This causes spatial correlation of the gage records, making the regression residuals not truly independent of each other.

Generalized Least Squares (GLS) regression, developed by Stedinger and Tasker (1985), is a more sophisticated regression method that accounts for record lengths and temporal and spatial correlations between gage records. The USGS and others consider GLS the best method currently available for RFF analysis. The RFF analyses in this study were all performed by the GLS method using the Weighted-Multiple-Linear Regression program (WREG v. 1.0) developed by the USGS (Eng et al. 2009).

4.2 Examination of Predictor Variables

Before applying GLS regression using the WREG software package, it is important to evaluate the predictor (independent) variables to determine whether they are suitable for use in regression. GLS regression and traditional multiple linear regression require that the predictor variables be independent of each other.

The first two predictors examined were the two soil permeability measures, $\mathrm{SP}_{\text {full }}$ and SP_{12}. $\mathrm{SP}_{\text {full }}$ is the watershed-average soil permeability averaged over the entire depth of the soil horizon, as used in the current USGS RFF equations for Kansas (Rasmussen and Perry 2000). We suspected that a measure of surface soil permeability might perform better in the regression analysis. Hence, we computed SP_{12}, the watershed-average soil permeability averaged over the top twelve inches of soil. Figure 4.1 shows a scatterplot of $\mathrm{SP}_{\text {full }}$ and SP_{12} for the 156 watersheds. The R^{2} coefficient for the plot is 0.82 , indicating a very high level of correlation ($r=0.91$) between the two parameters. Test regressions in WREG showed that $\mathrm{SP}_{\text {full }}$ and SP_{12} perform similarly as predictors of Q_{T}. We see no additional value in using SP_{12} instead of $\mathrm{SP}_{\text {full }}$. To remain consistent with Rasmussen and Perry (2000), we use $\mathrm{SP}_{\text {full }}$ in the subsequent regression analyses.

FIGURE 4.1
Scatter Plot of $\mathbf{S P}_{12}$ vs. $\mathbf{S P}_{\text {full }}$ with Linear Trendline

Table 4.1 displays the correlation matrix for prediction of the $\log \left(\mathrm{Q}_{25}\right)$. It is evident from the correlation matrix that most of the log-transformed watershed characteristics are highly correlated with one another (multicolinearity). For example, $\log (\mathrm{A})$ has a very strong positive correlation with channel length. This correlation makes sense, as larger watersheds will have longer main channels. Similarly, $\log (A)$ has a very strong negative correlation with the rainfall intensity. Again, this correlation has good physical basis. The i_{25} varies geographically, but is most highly dependent on the watershed time of concentration $\left(t_{c}\right)$, which in turn depends strongly on channel length (Equation 3.1). Drainage area also exhibits statistically significant (95% confidence level) with all of the other watershed characteristics except mean annual precipitation and soil permeability.

TABLE 4.1
Correlation Matrix for Prediction of \mathbf{Q}_{25} (Cells Highlighted in Yellow Indicate Statistically Significant Correlation Values with 95% Confidence)

	Correlation Coefficient, r							
	$\log \left(\mathrm{Q}_{25}\right)$		$\log \left(\mathrm{i}_{25}\right)$	$\log (\mathrm{A})$	$\log (\mathrm{L})$	$\log (\mathrm{Sh})$	$\log (\mathrm{SL})$	$\log (\mathrm{MAP})$
$\log \left(\mathrm{SP}_{\text {full }}\right)$								
$\log \left(\mathrm{Q}_{25}\right)$	1.000	-0.412	0.563	0.513	0.167	-0.221	0.081	-0.069
$\log \left(\mathrm{i}_{25}\right)$	-0.412	1.000	-0.942	-0.976	-0.677	0.804	0.107	0.098
$\log (\mathrm{~A})$	0.563	-0.942	1.000	0.966	0.478	-0.668	-0.092	-0.036
$\log (\mathrm{~L})$	0.513	-0.976	0.966	1.000	0.690	-0.717	-0.081	-0.062
$\log (\mathrm{Sh})$	0.167	-0.677	0.478	0.690	1.000	-0.564	-0.018	-0.109
$\log (\mathrm{SL})$	-0.221	0.804	-0.668	-0.717	-0.564	1.000	-0.297	0.215
$\log (\mathrm{MAP})$	0.081	0.107	-0.092	-0.081	-0.018	-0.297	1.000	-0.193
$\log \left(\mathrm{SP}_{\text {full }}\right)$	-0.069	0.098	-0.036	-0.062	-0.109	0.215	-0.193	1.000

The multicolinearity evident in Table 4.1 violates the conditions necessary for application of MLR or GLS regression. Regression requires that all predictor variables be independent of each other. One approach to reconciling multicolinearity is the application of principal components analysis (PCA). The goal of PCA is to find linear combinations of the proposed predictor variables that are independent of one another. These linear combinations of the original proposed predictors are called the principal components (PCs) and can be used in regression analysis as the new predictor variables.

PCA is able to determine how much information content is really available in a dataset. For example, although Table 4.1 lists seven potential predictor variables, the actual information content is less because the predictors are correlated with one another.

PCA was applied in this study using the computer program StatistiXL 1.9. PCA was used to determine how many independent variables can be constructed from the dataset, and to determine which combinations of variables make sense. PCA indicates that three principal components capture 88.4% of the total variability exhibited in the predictors listed in Table 4.1. After investigating potential combinations of variables, we selected the following three potential predictors: $\log \left(\mathrm{A} \cdot \mathrm{i}_{\mathrm{T}}\right), \log (\mathrm{MAP})$, and $\log \left(\mathrm{SP}_{\text {full }}\right)$.

The predictor $\log \left(\mathrm{A} \cdot \mathrm{i}_{\mathrm{T}}\right.$) was selected based on findings from previous research (McEnroe and Young 2007) and evaluation of PCA output for this study. The product $\mathrm{A} \cdot \mathrm{i}_{\mathrm{T}}$ captures information about the size of the watershed, the length and slope of the channel, and the extreme rainfall climatology of the watershed location. Table 4.2 shows the correlation matrix for these
three predictors. The correlation between $\log (\mathrm{MAP})$ and $\log \left(\mathrm{SP}_{\text {full }}\right)$ is statistically significant at the 95% level, but is low enough $(|r|<0.2)$ to be considered independent for purposes of linear regression analysis.

TABLE 4.2
Correlation Matrix for Potential Predictor Variables from PCA (Cells Highlighted in Yellow Indicate Statistically Significant Correlation Values with 95\% Confidence)

	Correlation Coefficient, r		
	$\log (\mathrm{MAP})$	$\log \left(\mathrm{SP}_{\text {full }}\right)$	$\log \left(\mathrm{A} \cdot \mathrm{i}_{25}\right)$
$\log (\mathrm{MAP})$	1.000	-0.193	-0.072
$\log \left(\mathrm{SP}_{\text {full }}\right)$	-0.193	1.000	0.017
$\log \left(\mathrm{~A} \cdot \mathrm{i}_{25}\right)$	-0.072	0.017	1.000

4.3 Generalized Least Squares (GLS) Regression

WREG 1.0 was used to perform GLS regression for regional flood frequency analysis. WREG requires a large quantity of input data, including the watershed characteristics for each watershed (to be used as independent variables), the flood quantile estimates for each gage (to be used as dependent variables), the weighted skew coefficient and log-Pearson Type III frequency factors (K values) used in the flood frequency analyses, and the time series of the annual maxima for each site.

WREG prompts the user to fit a curve to a spatial correlogram (graph of correlation between overlapping station records versus the distance between the gages). This correlation model is used in the GLS regression to account for the correlation between neighboring gages. The correlation model used by WREG requires two fitting parameters: α and θ. For this study, we set $\alpha=0.0035$ and $\theta=0.98$ to achieve a reasonable fit to the observed spatial correlations.

WREG also prompts the user for the mean square error (MSE) of the regional skew coefficient $\left(G_{R}\right)$ used in the flood frequency analyses. We used the best available method for determining regional skew for each state included in the study, which means that the $\operatorname{MSE}\left(\mathrm{G}_{\mathrm{R}}\right)$ was different for each state. The MSE for the regional skew equation for gages in Kansas is 0.0366 , while the MSE for the national skew coefficient map is 0.3025 . We evaluated the sensitivity of WREG to the $\operatorname{MSE}\left(\mathrm{G}_{\mathrm{R}}\right)$ value input by the user and found that the regression
coefficients are insensitive across the range of values from 0.0366 to 0.3025 . Because the study centers on Kansas, we input the $\operatorname{MSE}\left(\mathrm{G}_{\mathrm{R}}\right)$ for the Kansas regional skew equation (0.0366) to WREG.

Table 4.3 presents the final equations produced by the WREG GLS regression analyses. These equations are referred to as the HWK (Hydrology of Western Kansas) equations throughout the remainder of this report. For recurrence intervals of 2,5 and 10 years, the predictors $\mathrm{A} \cdot \mathrm{i}_{\mathrm{T}}$ and MAP were both found to be statistically significant and are included in the HWK equations. For higher recurrence intervals, only the predictor $A \cdot i_{T}$ was statistically significant. Soil permeability was not found to be a statistically significant parameter at any recurrence interval.

In addition to developing equations for all of Western Kansas, we divided the dataset by physiographic region and used WREG to develop separate sets of equations for each region. This analysis did not lead to significant improvements over the equations presented in Table 4.3.

TABLE 4.3
New HWK Regression Equations for Watersheds < $100 \mathbf{~ m i}^{2}$ in Western Kansas

HWK Regression Equation	Standard Model Error of Prediction, $\mathrm{S}_{\mathrm{p}}(\%)$
$Q_{2}=0.03311 \quad\left(A \cdot i_{2}\right)^{0.747}$	90.9
$(M A P)^{2.414}$	
$Q_{5}=1.122\left(A \cdot i_{5}\right)^{0.770}$	61.1
$(M A P)^{1.566}=5.754\left(A \cdot i_{10}\right)^{0.778}$	
$Q_{10}=5.1$	
$(M A P)^{1.181}$	55.1
$Q_{25}=346.7\left(A \cdot i_{25}\right)^{0.778}$	57.1
$Q_{50}=446.7\left(A \cdot i_{50}\right)^{0.792}$	60.6
$Q_{100}=549.5\left(A \cdot i_{100}\right)^{0.801}$	65.8

4.4 Comparison with Other Hydrologic Methods

Table 4.3 lists the standard model error of prediction $\left(\mathrm{S}_{\mathrm{p}}\right)$ in percent, as output by WREG. This measure is comparable to the standard errors presented in Rasmussen and Perry (2000). Table 4.4 lists the S_{p} values from Table 4.3 along with those for the existing USGS regression
equations for Kansas. The USGS values are presented as $+/-$ percentages, whereas WREG only provides the average of the $+/-$ values.

TABLE 4.4
Comparison of Standard Model Error of Prediction for HWK and USGS Regression Equations

T (years)	Standard Model Error of Prediction, Sp (\%)		
	HWK	USGS <30 mi^{2}	USGS $\geq 30 \mathrm{mi}^{2}$
2	90.9	$+64 /-39$	$+43 /-30$
5	61.1	$+53 /-35$	$+36 /-26$
10	55.1	$+58 /-37$	$+35 /-26$
25	57.1	$+58 /-37$	$+37 /-27$
50	60.6	$+64 /-39$	$+39 /-28$
100	65.8	$+77 /-44$	$+42 /-30$

The HWK equations exhibit higher standard model errors than the USGS regression equations. This is not surprising, given that the USGS equations were developed using data from across the state, with the majority of stations in the eastern portion of the state, where flood quantiles are less erratic and are more predictable.

Figure 4.2 displays the Q_{25} values predicted by the new HWK equations, the USGS equations (Rasmussen and Perry, 2000), and Extended Rational equations (McEnroe and Young 2007) versus the Q_{25} predicted for each gaged watershed using FFA. Only Kansas gages selected for this study are included in the graph. For Figure 4.2, we used the USGS two-parameter equation for watersheds $<30 \mathrm{mi}^{2}$ and the full, four-parameter equation for watersheds $\geq 30 \mathrm{mi}^{2}$.

Figure 4.3 displays a similar graph for the predicted Q_{100} values. All three methods exhibit considerable scatter about the $1: 1$ line. The USGS and Extended Rational equations tend to over-predict Q_{T} slightly more than 50% of the data points, while the HWK equations tend to under-predict $\mathrm{Q}_{\mathrm{T}} 60 \%$ of the time.

One should keep in mind that there are considerable uncertainties in the FFA-derived Q_{T} values used as the x values for Figures 4.2 and 4.3. Still, it appears that the Extended Rational equations work better than the USGS equations for watersheds with small observed Q_{T} values.

FIGURE 4.2
Comparison of \mathbf{Q}_{25} Estimates by Three Methods

FIGURE 4.3
Comparison of \mathbf{Q}_{100} Estimates by Three Methods

4.5 Recommendations

Although considerable effort was expended in the development of the HWK regression equations, it appears that these equations do not represent a substantial improvement over existing KDOT hydrologic methods. Although the HWK equations could be used for design in Western Kansas, recommending use of these equations would complicate the guidelines for selection of hydrologic methods in the KDOT Design Manual (Table 2.1) and could lead to confusion. As such, our recommendations are to use the Extended Rational method for watershed areas $>640 \mathrm{ac}$ and $<30 \mathrm{mi}^{2}$ and the USGS four-parameter regression equation for watersheds $\geq 30 \mathrm{mi}^{2}$ in both Western and Eastern Kansas. Figures 4.4 and 4.5 present a graphical evaluation of these recommended methods applied to the Kansas gages in our data set.

FIGURE 4.4
Evaluation of Recommended Methods for Estimation of \mathbf{Q}_{25} in Western Kansas

FIGURE 4.5
Evaluation of Recommended Methods for Estimation of Q_{100} in Western Kansas

Chapter 5: Rational Runoff Coefficients

This chapter examines Rational runoff coefficients for Western Kansas and proposes changes to KDOT's recommended C values. KDOT applies the Rational method to watersheds with drainage areas of one square mile or less. The data set compiled for this study includes only two stations in Kansas and five stations in adjacent states with drainage areas in this size range. Any statistical analysis of C values for so few stations would not be meaningful. However, an examination of the C values for all stations in the data set leads to some observations that should apply to the small watersheds as well as watersheds up to $100 \mathrm{mi}^{2}$.

5.1 Regional Analysis of Rational Runoff Coefficients

Rational C values vary greatly with recurrence interval. Table 5.1 displays the median C values by recurrence interval for all stations in our regional flood frequency data set. This data set includes stations in Western Kansas and nearby regions of Nebraska, Colorado, Oklahoma, New Mexico and Texas. Table 5.2 displays the median C values for Eastern and Western Kansas from our previous statewide study (McEnroe and Young 2007). The median C values for stations in our data set are somewhat lower than the values for Western Kansas alone because the expanded data set includes more far-western stations outside of Kansas. Runoff coefficients are more strongly dependent on recurrence interval in Western Kansas than in Eastern Kansas. Most of the watersheds in these data sets are much larger than 640 acres, so the median C values may not be directly applicable to very small watersheds. However, the C values for very small watersheds and intermediate-size watersheds should follow similar trends.

TABLE 5.1
Median Values of Rational C for All Stations in the RFF Data Set

Recurrence interval (years)	2	5	10	25	50	100
Median C value	0.06	0.14	0.22	0.35	0.44	0.53

TABLE 5.2
Median Values of Rational C for Stations in Eastern and Western Kansas

Recurrence interval (years)	2	5	10	25	50	100
Median C, Eastern Kansas	0.31	0.51	0.63	0.80	0.87	0.97
Median C, Western Kansas	0.10	0.21	0.28	0.39	0.48	0.59

(Source: McEnroe and Young 2007)

Contrary to expectations, we found no statistically significant relationship between C values and soil permeability. Figure 5.1 shows the lack of a significant relationship between the 10 -year C value $\left(\mathrm{C}_{10}\right)$ and the average soil permeability for the watershed.

FIGURE 5.1
Relationship between C10 and Soil Permeability

We also found no statistically significant relationship between C values and channel slope. This finding was expected. Channel slope affects the speed of runoff but not the volume of
runoff. In the Rational method, channel slope affects the time of concentration, which affects the rainfall intensity. The runoff coefficient can be considered independent of channel slope.

5.2 Comparison of Rational Method and Regression Methods

KDOT recommends the Rational method for drainage areas up to one square mile and three different sets of regional regression equations for areas over one square mile (Table 2.1). Discharges computed by the Rational method and the regional regression equations should not differ greatly for drainage areas in the neighborhood of one square mile.

The following four stations were selected for a comparison of the Rational method and the regional regression equations:

06873300 Ash Creek Tributary near Stockton, KS
06858700 North Fork Smoky Hill River Tributary near Winona, KS
06848200 Prairie Dog Creek Tributary near Norton, KS
06867800 Cedar Creek Tributary near Bunker Hill, KS

Table 5.3 provides relevant information for these stations. Drainage areas range from 0.86 to $1.09 \mathrm{mi}^{2}$ and times of concentration range from 49 to 80 minutes. Crops and grass are the predominant land covers.

TABLE 5.3
Watersheds for Comparison of Discharge Estimates by Different Methods

Station ID	06873300	06858700	06848200	06867800
County	Rooks	Logan	Norton	Russell
Mean ann. precip. (in.)	22.81	18.90	22.27	25.33
Drainage area (mi ${ }^{2}$)	0.86	0.94	1.07	1.09
Channel length (mi)	1.94	1.74	2.18	1.72
Channel slope (ft/mi)	53.4	67.7	53.27	149.51
Time of concentration (hr)	74.4	63.6	80.4	48.6
\% crops	48.5	90.0	58.0	13.2
\% grass	51.3	10.0	41.6	86.7
\% woods	0.1	0.0	0.3	0.1
\% impervious	0.1	0.0	0.1	0.0

Table 5.4 compares discharge estimates computed with the regional regression equations and the Rational method in the KDOT Design Manual (2011) for the four stations. Figures 5.2 through 5.5 display these comparisons graphically. Because the estimates from the Extended Rational equations and the three-variable equations are very similar, the estimates from the threevariable equations were omitted from the graphs for clarity.

TABLE 5.4
Comparison of Discharges from Regional Regression Equations and Rational Method with Current C Values

	Discharge (cfs)					
	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
Station 06873300						
USGS regression equations	79	220	357	581	779	1010
Extended Rational equations	72	197	325	533	730	963
Three-variable equations	70	191	304	491	684	884
Rational method (current)	321	421	488	643	762	880
Station 06858700						
USGS regression equations	49	155	266	457	632	839
Extended Rational equations	49	152	266	460	649	877
Three-variable equations	47	151	258	445	639	850
Rational method (current)	383	512	602	801	955	1104
Station 06848200						
USGS regression equations	84	238	390	640	864	1125
Extended Rational equations	78	216	361	593	818	1082
Three-variable equations	75	212	341	557	781	1014
Rational method (current)	375	493	575	756	899	1038
Station 068767800						
USGS regression equations	122	317	500	793	1049	1344
Extended Rational equations	170	428	684	1086	1461	1899
Three-variable equations	165	441	692	1107	1530	1964
Rational method (current)	534	684	789	1032	1214	1402

FIGURE 5.2
Discharges for Station 06873300 from Regional Regression Equations and Rational Method with Current C Values

FIGURE 5.3
Discharges for Station 06858700 from Regional Regression Equations and Rational Method with Current C Values

FIGURE 5.4
Discharges for Station 06848200 from Regional Regression Equations and Rational Method with Current C Values

FIGURE 5.5
Discharges for Station 06867800 from Regional Regression Equations and Rational
Method with Current C Values

These comparisons indicate that the Rational method with current C values tends to overestimate discharges for recurrence intervals below 100 years. The shorter the recurrence interval, the greater the apparent overestimation of discharge. The Rational estimates of Q_{100} are consistent, on average, with the Q_{100} estimates from the other methods.

5.3 Recommended Runoff Coefficients for Western Kansas

The comparisons in the previous section indicate that the Rational C values currently used by KDOT are too high (except at the 100-year recurrence interval) for small watersheds in Western Kansas. Reducing the C_{10} values by 40% brings the Rational estimates of Q_{10} into line with the regression estimates. The median values for Western Kansas in Table 5-2 suggest the following approximate relationships for the other recurrence intervals:

$$
\begin{array}{ll}
\mathrm{C}_{2}=0.40 \mathrm{C}_{10} & \text { Equation } 5.1 \\
\mathrm{C}_{5}=0.75 \mathrm{C}_{10} & \text { Equation } 5.2 \\
\mathrm{C}_{25}=1.50 \mathrm{C}_{10} & \text { Equation } 5.3 \\
\mathrm{C}_{50}=1.75 \mathrm{C}_{10} & \text { Equation } 5.4 \\
\mathrm{C}_{100}=2.00 \mathrm{C}_{10} & \text { Equation } 5.5
\end{array}
$$

These relationships apply only to pervious surfaces. The recurrence interval of the rainfall has much less impact on C values for impervious surfaces.

KDOT currently assumes that urban open space and pervious areas within the highway right-of-way have the same C values as cultivated agricultural land. This assumption is probably too conservative. Most engineering organizations, including the NRCS, assume that urban open spaces and pervious right-of-way areas have the runoff-producing characteristics as pasture or range. We favor this reasonable and widely accepted assumption. Runoff coefficients for pasture/range are lower than for cropland.

Based on these considerations, we recommend the runoff coefficients in Table 5.5 for small watersheds (less than 640 acres) in Western Kansas. The recommended C_{10} values for grassland, cropland and woods are 60% of the current values. The other C values for these land uses follow from Equations 5.1 through 5.5. Urban open spaces and pervious surfaces within the right-of-way are assumed equivalent to pasture/range. The current C value of 0.95 for impervious surfaces is retained for the 100-year recurrence interval; slightly lower values are applied to shorter recurrence intervals.

Rational discharge estimates for the four small watersheds in Western Kansas were recomputed using the proposed C values in Table 5.5 and compared with the estimates from the three regression methods. Table 5.6 and Figures 5.6 through 5.9 compare these discharge estimates. The Rational method with the recommended C values in Table 5.5 yields discharge estimate that agree well, on average, with the regression estimates for all recurrence intervals.

TABLE 5.5
Proposed Runoff Coefficients for Western Kansas

Land Use	Rational runoff coefficient, C					
	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
Impervious surfaces	0.80	0.86	0.90	0.93	0.94	0.95
Pervious surfaces within right-of-way	0.10	0.18	0.24	0.36	0.42	0.48
Urban open space (lawns, parks, etc.)	0.10	0.18	0.24	0.36	0.42	0.48
Pasture or range	0.10	0.18	0.24	0.36	0.42	0.48
Cultivated agricultural land	0.12	0.23	0.30	0.45	0.53	0.60
Woods	0.07	0.14	0.18	0.27	0.32	0.36

TABLE 5.6
Comparison of Discharges from Regional Regression Equations and Rational Method with Proposed C Values

	Discharge (cfs)					
	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
Station 06873300						
USGS regression equations	79	220	357	581	779	1010
Extended Rational equations	72	197	325	533	730	963
Three-variable equations	70	191	304	491	684	884
Rational method (proposed)	321	421	488	643	762	880
Station 06858700						
USGS regression equations	49	155	266	457	632	839
Extended Rational equations	49	152	266	460	649	877
Three-variable equations	47	151	258	445	639	850
Rational method (proposed)	383	512	602	801	955	1104
Station 06848200						
USGS regression equations	84	238	390	640	864	1125
Extended Rational equations	78	216	361	593	818	1082
Three-variable equations	75	212	341	557	781	1014
Rational method (proposed)	375	493	575	756	899	1038
Station 06867800						
USGS regression equations	122	317	500	793	1049	1344
Extended Rational equations	170	428	684	1086	1461	1899
Three-variable equations	165	441	692	1107	1530	1964
Rational method (proposed)	534	684	789	1032	1214	1402

FIGURE 5.6
Discharges for Station 0687330 from Regional Regression Equations and Rational Method with Proposed C Values

FIGURE 5.7
Discharges for Station 06858700 from Regional Regression Equations and Rational Method with Proposed C Values

FIGURE 5.8
Discharges for Station 06848200 from Regional Regression Equations and Rational Method with Proposed C Values

FIGURE 5.9
Discharges for Station 0687800 from Regional Regression Equations and Rational Method with Proposed C Values

5.4 Recommended Runoff Coefficients for Eastern Kansas

We propose certain adjustments to the current statewide C values for use in Eastern Kansas. Table 5.7 shows our proposed C values for Eastern Kansas. The C values for pasture/range, cropland and woods for recurrence intervals of 10 years and greater are the same as the current values. The C values for impervious surfaces are the same values recommended for Western Kansas. Urban open spaces and pervious surfaces within the right-of-way are assumed equivalent to pasture/range rather than cropland. Lower values of C_{2} and C_{5} are applied to the pervious land uses. We propose C_{2} and C_{5} values equal to 50% and 80% of the C_{10} values. These percentages follow from the median C values for Eastern Kansas in Table 5.2.

TABLE 5.7
Recommended Runoff Coefficients for Eastern Kansas

Land Use	Rational runoff coefficient, C					
	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
Impervious surfaces	0.80	0.86	0.90	0.93	0.94	0.95
Pervious surfaces within right-of-way	0.20	0.32	0.40	0.50	0.55	0.60
Urban open space (lawns, parks, etc.)	0.20	0.32	0.40	0.50	0.55	0.60
Pasture or range	0.20	0.32	0.40	0.50	0.55	0.60
Cultivated agricultural land	0.25	0.40	0.50	0.63	0.69	0.75
Woods	0.15	0.24	0.30	0.38	0.41	0.45

Chapter 6: Conclusions and Summary of Recommendations

This report describes an extensive evaluation of hydrologic methods for small watersheds $\left(<30 \mathrm{mi}^{2}\right)$ in Western Kansas. We assembled a data set of all USGS gaging stations that met the following criteria:
(1) at least 10 years of peak flow records,
(2) watershed area less than $100 \mathrm{mi}^{2}$,
(3) unregulated watersheds (no major lakes or reservoirs), and
(4) watersheds within 100 miles of the Kansas border and west of 97.5° longitude. The data set contains 156 stations, 62 of which are in Kansas.

Regional flood frequency analyses were performed on this data set using Generalize Least Squares regression in WREG 1.0. Soil permeability was found not to be a significant predictor variable. Regression equations were developed for Western Kansas, but our comparisons show that these equations are not a substantial improvement over existing regression equations. We recommend the Extended Rational method for watershed areas >640 ac and $<30 \mathrm{mi}^{2}$ and the USGS four-parameter regression equation for watersheds $\geq 30 \mathrm{mi}^{2}$ in both Western and Eastern Kansas.

An analysis of Rational C values indicates that C values currently used for design in are too high for recurrence intervals below 100 years. New Rational C values for Western Kansas were developed and checked against regression methods for consistency. Our proposed Rational C values for Western Kansas are presented in Table 5.5. The proposed C values are lower than the current values for all recurrence intervals below 100 years. We also propose certain adjustments to the Rational C values for Eastern Kansas in Table 5.7. We recommend that urban open spaces and pervious surfaces within the right-of-way be considered equivalent to pasture/range rather than cropland in both Western and Eastern Kansas.

References

Bonnin, G. M., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley. 2006. NOAA Atlas 14: Precipitation-Frequency Atlas of the United States. Volume 1 Version 4.0: Semiarid Southwest.

Brunner, G. W. and M. J. Fleming. 2010. HEC-SSP Statistical Software Package Version 2.0, U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center, Report No. CPD-86.

Capesius, J.P., and V.C. Stephens. 2009. Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado. Scientific Investigations Report 2009-5136, U.S. Geological Survey.

Colorado Department of Transportation. 2004. Drainage Design Manual. Chapter 7, "Hydrology."

Cordes, K.E. and R.H. Hotchkiss. 1993. Design Discharge of Culverts. NDOR Research Project No. RES-1 (0099) P466, Nebraska Department of Roads.

Daly, C., R.P. Neilson, and D.L. Phillips. 1994. "A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain." Journal of Applied Meteorology 33: 140-158.

Daly, C., G.H. Taylor, and W.P. Gibson. 1997. "The PRISM Approach to Mapping Precipitation and Temperature, In Reprint." 10th Conf. on Applied Climatology, Reno, NV, American Meteorological Society, 10-12.

Djokic, D. 2008. Comprehensive Terrain Preprocessing Using ArcHydro Tools. ESRI.

Eng, K., Y.-Y. Chen, and J. E. Kiang. 2009. User's Guide to the Weighted-Multiple-Linear Regression Program (WREG v. 1.0), Techniques and Methods 4-A8. United States Geological Survey, 21 pp.

Farnsworth, R.K., E.S. Thompson and E.L. Peck. 1982. Evaporation Atlas for the Contiguous 48 United States. NOAA Technical Report NWS 33.

Frederick, R. H., V.A. Meyers and E. P. Auciello. 1977. "Five- to 60-Minute Precipitation Frequency for the Eastern and Central United States." NOAA Technical Memorandum NWS HYDRO-35, National Weather Service.

Gesch, D.B. 2007. The National Elevation Dataset, in Maune, D., ed., Digital Elevation Model Technologies and Applications: The DEM User's Manual, 2nd Edition. Bethesda, Maryland, American Society for Photogrammetry and Remote Sensing, p. 99-118.

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D. 2002. The National Elevation Dataset: Photogrammetric Engineering and Remote Sensing 68 (1): 5-11.

Hershfield, D. M. 1961. "Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods of 1 to 100 Years." Technical Paper No. 40, U. S. Weather Bureau.

Interagency Advisory Committee on Water Data. 1981. "Guidelines for Determining Flood Flow Frequency." Bulletin 17B, U. S. Geological Survey.

Kansas Department of Transportation. 2011. Design Manual, Volume I, Part C, Elements of Drainage and Culvert Design, May 2011 edition.

Lewis, J. M. 2010. "Methods for Estimating the Magnitude and Frequency of Peak Streamflows for Unregulated Streams in Oklahoma." Scientific Investigations Report 2010-5137, U.S. Geological Survey.

McEnroe, B.M. and C.B. Young. 2011. "Calibration of Hydrologic Design Inputs for a Small Urban Watershed in Johnson County, Kansas." City of Overland Park and Johnson County Stormwater Management Program.

McEnroe, B.M., and P. Gonzalez. 2003. "Storm Durations and Antecedent Conditions for Flood Discharge Estimation." Report No. K-TRAN: KU-02-04, Kansas Department of Transportation.

McEnroe, B.M. 2007. "Sizing of Highway Culverts and Bridges: A Historical Review of Methods and Criteria." Report No. K-TRAN: KU-05-4, Kansas Department of Transportation.

McEnroe, B.M. and C.B. Young. 2007. "Flood Frequency Relationships for Small Watersheds in Kansas." Report No. K-TRAN: KU-06-4, Kansas Department of Transportation.

McEnroe, B.M., and H. Zhao. 2000. "Lag Times and Peak Coefficients for Small Rural Watersheds in Kansas." Report No. K-TRAN: KU-98-1, Kansas Department of Transportation.

Miller, J. F., R. H. Frederick, and R. J. Tracey. 1973. "Precipitation-Frequency Atlas of the Western United States." Volume III - Colorado, National Weather Service.

Nebraska Department of Roads. 2006. Drainage Design and Erosion Control Manual. Chapter 1, "Drainage."

NRCS. 2012. U.S. General Soil Map (STATSGO2). Natural Resources Conservation Service, United States Department of Agriculture. Available online athttp://soildatamart.nrcs.usda.gov. Accessed April 17, 2012.

Oklahoma Department of Transportation. 1992. Design Manual. Chapter 15, "Drainage."

Rasmussen, P.P. and C.A. Perry. 2000. "Estimation of Peak Streamflows for Unregulated Rural Streams in Kansas." Water-Resources Investigations Report 00-4079, U.S. Geological Survey.

Soenksen, P.J., et al. 1999. "Peak-Flow Frequency Relations and Evaluation of the Peak-Flow Gaging Network in Nebraska." Water-Resources Investigations Report 99-4032, U.S. Geological Survey.

Stedinger, J.R. and Tasker, G. D. 1985. "Regional Hydrologic Analysis, 1, Ordinary, Weighted, and Generalized Least Squares Compared." Water Resources Research 21 (9): 14211432.

USGS. 2012. National Water Information System: Web Interface, http://waterdata.usgs.gov/nwis.

Appendix

TABLE A. 1
Station Information for Selected Peak-Flow Records

Station number	Station name	State	County	Years of record	Period of record
6687600	Ash Hollow near Oshkosh	NE	Garden	10	1968-1978
6759700	Sand Cr. Tr. near Lindon	CO	Washington	11	1969-1979
6759900	Antelope Draw near Union	CO	Morgan	11	1969-1979
6760200	Igo Cr. Tr. near Keota	CO	Weld	11	1905-1979
6760430	Spring Canyon Cr. near Peetz	CO	Logan	11	1905-1979
6763200	Lodgepole Cr. Tr. near Sunol	NE	Cheyenne	11	1968-1978
6767200	North Fork Plum Cr. Tr. near Farnam	NE	Lincoln	27	1952-1978
6768050	Buffalo Cr. Tr. No. 1 near Buffalo	NE	Dawson	14	1965-1978
6768100	East Buffalo Cr. near Buffalo	NE	Dawson	28	1951-1978
6768200	Buffalo Cr. at Buffalo	NE	Dawson	17	1951-1967
6768300	Buffalo Cr. Tr. No. 2 near Buffalo	NE	Dawson	15	1951-1965
6768400	West Buffalo Cr. near Buffalo	NE	Dawson	28	1951-1978
6768500	Buffalo Cr. near Darr	NE	Dawson	23	1947-1969
6769100	Elm Cr. Tr. near Overton	NE	Dawson	28	1951-1978
6769200	Elm Cr. near Sumner	NE	Dawson	28	1951-1978
6769300	Elm Cr. Tr. No. 2 near Overton	NE	Dawson	28	1951-1978
6769500	Elm Cr. near Overton	NE	Dawson	12	1947-1958
6770600	Wood R. Tr. near Lodi	NE	Custer	27	1905-1978
6770700	Wood R. near Lodi	NE	Custer	27	1952-1978
6770800	Wood R. near Oconto	NE	Custer	28	1950-1978
6770900	Wood R. at Oconto	NE	Custer	28	1950-1978
6770910	Wood R. near Lomax	NE	Custer	27	1952-1978
6782800	North Branch Mud Cr. at Broken Bow	NE	Custer	17	1951-1967
6782900	Mud Cr. Tr. near Broken Bow	NE	Custer	29	1945-1978
6784700	Turkey Cr. near Farwell	NE	Howard	25	1950-1978
6784800	Turkey Cr. near Dannebrog	NE	Howard	21	1965-1993
6789200	Davis Cr. Tr. No. 2 near North Loup	NE	Valley	20	1951-1970
6789300	Davis Cr. near North Loup	NE	Valley	17	1951-1967
6789400	Davis Cr. Southwest of North Loup	NE	Valley	28	1951-1978
6789500	Davis Cr. near Cotesfield	NE	Greeley	11	1948-1958
6790900	Mary's Cr. at Wolbach	NE	Greeley	16	1952-1967
6821300	North Fork Arikaree R. Tr. near Shaw	CO	Lincoln	11	1969-1978
6821400	North Fork Black Wolf Cr. near Vernon	CO	Yuma	11	1969-1979
6822600	Patent Cr. near St. Petersburg	CO	Logan	11	1969-1979
6826900	Sand Cr. near Hale	CO	Yuma	11	1969-1979
6828100	North Branch Indian Cr. near Max	NE	Dundy	10	1962-1978
6829700	Thompson Canyon near Trenton	NE	Hitchcock	13	1966-1978
6834200	Spring Cr. Tr. near Amherst	CO	Sedgewick	11	1969-1979
6835100	Bobtail Cr. near Palisade	NE	Hitchcock	13	1966-1978
6838200	Coon Cr. at Indianola	NE	Red Willow	37	1961-1999
6838550	Dry Cr. at Bartley	NE	Red Willow	37	1961-1999
6839200	Elkhorn Canyon near Maywood	NE	Frontier	27	1952-1978

TABLE A. 1
Station Information for Selected Peak-Flow Records (Continued)

Station number	Station name	State	County	Years of record	Period of record
6839400	Elkhorn Canyon Southwest of Maywood	NE	Frontier	19	1952-1970
6839600	Frazier Cr. near Maywood	NE	Frontier	19	1952-1970
6839850	Fox Cr. North of Curtis	NE	Lincoln	19	1952-1970
6839900	Fox Cr. above Cut Canyon near Curtis	NE	Lincoln	28	1951-1978
6839950	Cut Canyon near Curtis	NE	Lincoln	28	1951-1978
6840000	Fox Cr. at Curtis	NE	Frontier	34	1951-1993
6840500	Dry Cr. near Curtis	NE	Frontier	20	1947-1970
6841500	Mitchell Cr. above Harry Strunk Lake	NE	Frontier	25	1948-1974
6844210	Turkey Cr. at Edison	NE	Furnas	16	1978-1993
6844700	South Fork Sappa Cr. near Brewster	KS	Sherman	22	1968-1989
6844800	South Fork Sappa Cr. near Goodland	KS	Sherman	33	1957-1989
6845100	Long Branch Draw near Norcatur	KS	Norton	53	1957-2010
6845900	Little Beaver Cr. Tr. near Mcdonald	KS	Rawlins	9	1957-1966
6846200	Beaver Cr. Tr. near Ludell	KS	Rawlins	33	1957-1989
6847600	Prairie Dog Cr. Tr. at Colby	KS	Thomas	55	1957-2011
6848200	Prairie Dog Cr. Tr. near Norton	KS	Norton	35	1957-1991
6850200	Cottonwood Cr. near Bloomington	NE	Franklin	26	1948-1978
6851100	West Branch Thompson Cr. at Hildreth	NE	Kearney	18	1953-1970
6851300	W. Branch Thompson Cr. Tr. near Hildreth	NE	Franklin	26	1953-1978
6852000	Elm Cr. at Amboy	NE	Webster	40	1948-1993
6853100	Beaver Cr. near Rosemont	NE	Webster	40	1939-1978
6855900	Wolf Cr. near Concordia	KS	Cloud	19	1963-1981
6856100	West Cr. near Talmo	KS	Republic	34	1941-1989
6858700	North Fork Smoky Hill R. Tr. near Winona	KS	Logan	16	1957-1977
6860300	South Branch Hackberry Cr. near Orion	KS	Gove	12	1957-1970
6863400	Big Cr. Tr. near Ogallah	KS	Trego	52	1957-2011
6863700	Big Cr. Tr. near Hays	KS	Ellis	52	1957-2011
6863900	North Fork Big Cr. near Victoria	KS	Ellis	25	1963-1987
6864300	Smoky Hill R. Tr. at Dorrance	KS	Russell	54	1957-2011
6864700	Spring Cr. near Kanopolis	KS	Ellsworth	33	1957-1989
6866800	Saline R. Tr. at Collyer	KS	Trego	33	1957-1989
6867800	Cedar Cr. Tr. near Bunker Hill	KS	Russell	21	1957-1977
6868300	Coon Cr. Tr. near Luray	KS	Osborne	55	1957-2011
6868700	North Branch Spillman Cr. near Ash Grove	KS	Lincoln	15	1963-1977
6868900	Bullfoot Cr . Tr. near Lincoln	KS	Lincoln	31	1957-1989
6871900	Deer Cr. near Phillipsburg	KS	Phillips	15	1967-1981
6872100	M. Cedar Cr. at Kensington	KS	Smith	22	1905-1977
6872300	M. Beaver Cr. near Smith Center	KS	Smith	10	1961-1970
6872600	Oak Cr. at Bellaire	KS	Smith	33	1957-1989
6873300	Ash Cr. Tr. near Stockton	KS	Rooks	51	1957-2011
6873700	Kill Cr. near Bloomington	KS	Osborne	18	1964-1981
6873800	Kill Cr. Tr. near Bloomington	KS	Osborne	21	1957-1977

Table A. 1
Station Information for Selected Peak-Flow Records (Continued)

Station number	Station name	State	County	Years of record	Period of record
6874500	East Limestone Cr. near Ionia	KS	Jewell	38	1934-1989
6876200	M. Pipe Cr. near Miltonvale	KS	Cloud	21	1957-1977
6880590	N. Br. W. Fork Big Blue R. Tr. at Giltner	NE	Hamilton	11	1968-1978
6880710	School Cr. Tr. near Harvard	NE	Clay	19	1952-1970
6880720	School Cr. near Harvard	NE	Clay	26	1953-1978
6880730	School Cr. Tr. No. 2 near Harvard	NE	Clay	26	1953-1978
6880740	School Cr. near Saronville	NE	Clay	19	1952-1969
6880775	Beaver Cr. Tr. near Henderson	NE	York	11	1968-1978
6883600	South Fork Big Sandy Cr. near Edgar	NE	Nuckolls	18	1953-1970
6883700	South Fork Big Sandy Cr. near Davenport	NE	Nuckolls	28	1950-1978
6883800	South Fork Big Sandy Cr. near Carleton	NE	Thayer	19	1952-1970
7126325	Taylor Arroyo Bl Rock Cr.ossing	CO	Las Animas	29	1983-2011
7126390	Lockwood Canyon Cr. near Thatcher	CO	Las Animas	28	1983-2011
7126415	Red Rock Canyon Cr. near Thatcher	CO	Las Animas	29	1983-2011
7126480	Bent Canyon Cr. near Timpas	CO	Las Animas	27	1984-2011
7133200	Clay Cr. Tr. near Deora	CO	Prowers	11	1969-1979
7138600	White Woman Cr. Tr. near Selkirk	KS	Greeley	39	1957-2010
7138800	Lion Cr. Tr. near Modoc	KS	Scott	21	1957-1977
7139700	Arkansas R. Tr. near Dodge City	KS	Ford	53	1957-2011
7139800	Mulberry Cr. near Dodge City	KS	Ford	22	1968-1990
7140300	Whitewoman Cr. near Bellefont	KS	Hodgeman	33	1957-1989
7140600	Pawnee R. Tr. near Kalvesta	KS	Finney	33	1957-1989
7140700	Guzzlers Gulch near Ness City	KS	Ness	19	1962-1980
7141400	South Fork Walnut Cr. Tr. near Dighton	KS	Lane	21	1957-1977
7141600	Long Branch Cr. near Ness City	KS	Ness	33	1957-1989
7141800	Otter Cr. near Rush Center	KS	Rush	33	1956-1989
7142100	Rattlesnake Cr. Tr. near Mullinville	KS	Kiowa	33	1957-1989
7142500	Spring Cr. near Dillwyn	KS	Stafford	21	1957-1977
7142700	Salt Cr. near Partridge	KS	Reno	33	1957-1989
7142860	Cow Cr. near Claflin	KS	Barton	22	1967-1988
7142900	Blood Cr. near Boyd	KS	Barton	33	1957-1989
7143100	Little Cheyenne Cr. Tr. near Claflin	KS	Barton	55	1957-2011
7143200	Plum Cr. near Holyrood	KS	Ellsworth	20	1957-1977
7143500	Little Arkansas R. near Geneseo	KS	Rice	21	1957-1977
7143600	Little Arkansas R. near Little R.	KS	Rice	26	1960-1985
7144850	S. Fork of S. Fork Ninnescah R. near Pratt	KS	Pratt	19	1961-1979
7144900	S. Fork Ninnescah R. Tr. near Pratt	KS	Pratt	32	1957-1989
7145300	Clear Cr. near Garden Plain	KS	Sedgewick	33	1957-1989
7148700	Dog Cr. near Deerhead	KS	Barber	21	1957-1977
7148800	Medicine Lodge R. Tr. nr. Medicine Lodge	KS	Barber	21	1957-1977
7150580	Sand Cr. Tr. near Kremlin	OK	Garfield	12	1964-1975
7151600	Rush Cr. near Harper	KS	Harper	33	1957-1989

TABLE A. 1
Station Information for Selected Peak-Flow Records (Continued)

Station number	Station name	State	County	Years of record	Period of record
7152520	Black Bear Cr. Tr. near Garber	OK	Garfield	12	1964-1974
7155100	Cold Springs Cr. near Wheeless	OK	Cimarron	18	1964-1984
7155900	North Fork Cimarron R. Tr. near Elkhart	KS	Morton	33	1957-1989
7156600	Cimarron R. Tr. near Moscow	KS	Seward	33	1957-1989
7156700	Cimarron R. Tr. near Satanta	KS	Seward	49	1957-2010
7157100	Crooked Cr. near Copeland	KS	Gray	33	1957-1989
7157400	Crooked Cr. Tr. at Meade	KS	Meade	33	1957-1989
7157550	West Fork Cr. near Knowles	OK	Beaver	22	1964-1985
7157700	Keiger Cr. near Ashland	KS	Clark	32	1957-1989
7157900	Cavalry Cr. at Coldwater	KS	Comanche	28	1957-1988
7158020	Cimarron R. Tr. near Lone Wolf	OK	Major	12	1964-1974
7158080	Sand Cr. Tr. near Waynoka	OK	Woods	13	1951-1974
7158180	Salt Cr. Tr. near Okeene	OK	Blaine	12	1964-1975
7158500	Preacher Cr. near Dover	OK	Kingfisher	26	1952-1984
7158550	Turkey Cr. Tr. near Goltry	OK	Alfalfa	19	1964-1982
7160350	Skeleton Cr. at Enid	OK	Garfield	15	1997-2011
7226200	Bueyeros Cr. at Bueyeros	NM	Harding	32	1957-2011
7226300	Carrizo Cr. near Roy	NM	Harding	53	1955-2010
7227295	Sandy Arroyo Tr. near Clayton	NM	Union	43	1952-1996
7227300	Sand Draw near Clayton	NM	Union	16	1905-2010
7227460	E. Fork Cheyenne Cr. Tr. near Channing	TX	Hartley	10	1965-1974
7228290	Rough Cr. near Thomas	OK	Custer	22	1964-1985
7228450	Deer Cr. Tr. near Hydro	OK	Caddo	12	1964-1974
7232650	Aqua Frio Cr. near Felt	OK	Cimarron	12	1905-1975
7234050	North Fork Clear Cr. Tr. near Balko	OK	Beaver	22	1964-1985
7234290	Clear Cr. Tr. near Catesby	OK	Ellis	20	1966-1985
7235700	Little Wolf Cr. Tr. near Gage	OK	Ellis	11	1964-1973
7237750	Cottonwood Cr. near Vici	OK	Dewey	21	1964-1984
7239050	North Canadian R. Tr. near Eagle City	OK	Blaine	12	1964-1974
7321500	Sandstone Cr. SWS 3 near Elk City	OK	Roger Mills	14	1955-1973

TABLE A. 2
Watershed Characteristics

Station number	$\begin{gathered} \text { DA } \\ \left(\mathrm{mi}^{2}\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{CDA} \\ & \left(\mathrm{mi}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { MAP } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{mi}) \end{gathered}$	$\begin{gathered} \mathrm{Sl} \\ (\mathrm{ft} / \mathrm{mi}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{c}} \\ (\mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SP} \\ (\mathrm{in} . / \mathrm{hr}) \end{gathered}$
6687600	48.88	48.88	16.98	14.01	10.0	7.93	1.26
6759700	3.62	1.72	15.21	5.69	30.2	3.04	1.37
6759900	5.24	1.34	14.33	5.32	24.8	3.11	2.68
6760200	1.56	1.53	14.78	4.69	85.5	1.90	2.32
6760430	17.90	9.96	16.31	11.43	13.4	6.30	2.01
6763200	19.17	19.17	16.57	13.16	22.5	5.83	1.86
6767200	1.73	1.73	21.59	3.53	32.9	2.16	1.30
6768050	2.11	2.11	22.76	2.13	36.5	1.50	1.30
6768100	5.19	5.19	22.65	6.76	25.8	3.59	1.30
6768200	30.42	30.60	22.71	14.69	26.7	5.92	1.29
6768300	1.92	1.92	22.62	4.02	25.8	2.55	1.30
6768400	16.66	16.66	22.58	11.49	17.6	5.78	1.29
6768500	63.65	63.65	22.65	23.93	13.3	10.30	1.30
6769100	0.60	0.60	23.30	1.36	41.8	1.06	1.30
6769200	14.85	14.85	23.22	8.31	14.6	4.96	1.30
6769300	5.81	5.81	23.25	4.74	21.2	3.03	1.30
6769500	32.90	32.90	23.28	12.33	12.5	6.78	1.30
6770600	2.06	2.06	22.82	3.07	32.9	1.97	1.34
6770700	19.35	19.35	22.81	12.61	13.5	6.71	1.35
6770800	24.72	24.72	22.83	13.46	13.6	6.99	1.36
6770900	43.95	43.95	22.84	17.14	11.4	8.70	1.35
6770910	79.29	79.29	22.91	29.08	8.9	13.36	1.36
6782800	10.72	10.80	23.18	8.27	27.7	4.01	2.23
6782900	5.93	5.93	23.24	5.29	50.3	2.45	1.69
6784700	27.57	27.57	24.76	18.01	11.2	9.02	1.33
6784800	65.81	65.81	24.97	32.40	8.6	14.53	1.32
6789200	6.77	6.77	24.22	6.10	24.0	3.43	1.32
6789300	21.12	21.12	24.29	9.96	16.7	5.35	1.32
6789400	31.25	31.25	24.33	17.61	10.6	9.07	1.32
6789500	81.04	81.04	24.49	34.28	8.7	15.02	1.32
6790900	7.55	7.55	25.57	5.73	24.5	3.27	1.30
6821300	6.58	1.45	15.02	9.06	27.3	4.27	1.30
6821400	16.37	16.37	17.37	9.86	32.0	4.29	1.27
6822600	2.27	2.27	16.67	4.47	24.3	2.78	2.08
6826900	19.98	10.60	17.28	10.10	26.3	4.65	1.31
6828100	3.54	3.54	19.57	4.06	85.7	1.73	1.29
6829700	9.14	9.14	20.69	6.29	31.8	3.19	1.29
6834200	45.75	13.10	17.10	24.59	12.6	10.67	5.54
6835100	29.64	29.64	20.09	13.80	29.6	5.50	1.28
6838200	68.41	68.41	21.44	33.68	10.0	14.17	1.30
6838550	41.76	41.76	21.66	23.54	13.3	10.17	1.30

Note: DA = drainage area, CDA $=$ contributing drainage area, MAP $=$ mean annual precipitation, $\mathrm{L}=$ main-channel length, $\mathrm{Tc}=$ time of concentration, $\mathrm{SP}=$ generalized soil permeability

TABLE A. 2
Watershed Characteristics (Continued)

Station number	$\begin{gathered} \hline \text { DA } \\ \left(\mathrm{mi}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{CDA} \\ & \left(\mathrm{mi}^{2}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { MAP } \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{L} \\ (\mathrm{mi}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Sl} \\ (\mathrm{ft} / \mathrm{mi}) \end{gathered}$	$\begin{gathered} \hline \mathrm{T}_{\mathrm{c}} \\ (\mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SP } \\ \text { (in. } / \mathrm{hr} \text {) } \end{gathered}$
6839200	6.97	6.97	20.81	4.77	50.6	2.28	1.30
6839400	13.78	12.90	20.85	9.25	25.3	4.44	1.31
6839600	11.36	11.36	20.95	6.05	32.0	3.11	1.32
6839850	13.53	13.53	20.91	6.32	33.1	3.16	1.30
6839900	31.30	31.30	20.92	13.56	20.6	6.12	1.30
6839950	25.47	25.47	20.79	17.29	18.3	7.47	1.30
6840000	77.20	77.20	20.93	27.90	14.8	10.99	1.31
6840500	21.61	21.61	21.23	12.67	20.1	5.90	1.33
6841500	52.13	52.13	21.54	30.48	11.6	12.62	1.36
6844210	78.78	78.78	22.53	42.04	10.2	16.31	1.31
6844700	85.65	74.00	18.16	33.65	11.2	13.65	1.29
6844800	21.12	4.98	17.94	13.24	13.4	6.94	1.29
6845100	31.97	31.70	21.90	16.45	12.7	8.15	1.30
6845900	8.17	2.12	19.36	5.91	37.2	2.91	1.26
6846200	10.68	10.20	20.60	7.33	33.9	3.46	1.27
6847600	8.09	7.53	19.62	6.91	18.1	4.09	1.29
6848200	1.07	1.02	22.27	2.18	53.3	1.34	1.30
6850200	15.76	15.76	24.18	13.34	22.8	5.85	1.28
6851100	41.80	18.40	24.27	14.90	5.8	9.92	1.11
6851300	11.42	8.20	24.45	9.28	10.2	6.01	1.20
6852000	51.71	51.71	26.24	29.07	9.9	12.90	1.64
6853100	0.75	0.75	26.59	1.96	36.8	1.41	1.18
6855900	56.53	56.00	28.60	17.99	9.9	9.39	1.00
6856100	39.98	42.00	28.83	30.44	8.7	13.88	0.86
6858700	0.94	1.13	18.90	1.74	67.7	1.06	1.29
6860300	59.49	49.60	19.64	37.52	10.2	15.12	1.29
6863400	4.90	4.81	21.66	7.78	18.7	4.38	1.19
6863700	6.06	6.19	23.04	8.88	17.8	4.86	0.98
6863900	52.98	54.00	22.94	27.95	8.8	13.08	1.24
6864300	5.51	5.39	25.84	5.01	25.9	2.94	1.06
6864700	9.70	9.84	27.36	9.00	19.5	4.75	1.04
6866800	3.54	3.13	21.02	3.82	31.6	2.30	1.19
6867800	1.09	0.99	25.33	1.72	149.5	0.81	1.08
6868300	6.54	6.53	25.12	5.16	44.0	2.52	1.11
6868700	27.03	26.10	25.96	16.17	15.2	7.61	1.00
6868900	2.89	2.64	27.21	5.17	30.7	2.84	1.05
6871900	67.64	65.00	22.83	22.65	15.3	9.48	1.36
6872100	59.79	58.90	23.96	29.62	9.8	13.12	1.21
6872300	72.84	71.00	24.61	26.92	11.8	11.56	1.24
6872600	5.38	4.75	25.23	6.35	23.7	3.54	1.20
6873300	0.86	0.89	22.81	1.94	53.4	1.24	1.19

Note: DA = drainage area, CDA $=$ contributing drainage area, MAP $=$ mean annual precipitation, $\mathrm{L}=$ main-channel length, $\mathrm{Tc}=$ time of concentration, $\mathrm{SP}=$ generalized soil permeability

TABLE A. 2
Watershed Characteristics (Continued)

Station number	DA $\left(\mathrm{mi}^{2}\right)$	CDA $\left(\mathrm{mi}^{2}\right)$	MAP (in).	L (mi)	Sl $(\mathrm{ft} / \mathrm{mi})$	T_{c} (hr)	SP $(\mathrm{in} . / \mathrm{hr})$
6873700	51.64	52.00	24.20	20.17	14.8	8.88	1.15
6873800	1.43	1.45	24.46	2.89	41.6	1.75	1.14
6874500	26.64	25.60	26.49	17.81	12.5	8.64	1.18
6876200	9.71	10.20	29.23	9.48	21.2	4.79	0.90
6880590	5.12	5.08	26.59	8.74	9.9	5.84	0.72
6880710	19.64	19.64	27.02	14.28	6.2	9.41	0.75
6880720	39.52	37.70	27.00	15.75	6.7	9.78	0.74
6880730	14.55	13.90	26.99	10.24	9.9	6.48	0.72
6880740	89.04	49.70	27.01	25.54	6.8	13.41	0.73
6880775	1.28	1.28	27.25	2.97	6.3	3.33	0.69
6883600	13.64	13.64	27.40	11.90	4.9	9.01	0.76
6883700	34.20	34.20	27.52	22.07	4.8	13.69	0.76
6883800	56.79	56.79	27.66	30.71	4.6	17.25	0.77
7126325	48.54	48.54	13.49	16.64	31.9	6.06	0.83
7126390	48.93	48.93	13.31	17.16	32.7	6.14	1.06
7126415	48.83	48.83	13.31	14.57	40.3	5.14	0.89
7126480	56.32	56.32	13.00	22.36	34.8	7.16	0.83
7133200	2.45	2.45	14.55	3.38	84.7	1.53	2.90
7138600	26.33	30.41	16.76	18.64	15.1	8.37	1.10
7138800	8.21	1.19	18.60	10.67	10.2	6.58	1.08
7139700	9.34	8.66	21.98	9.36	14.2	5.42	1.38
7139800	77.48	73.80	21.71	27.63	9.3	12.73	1.30
7140300	18.39	14.00	22.56	12.64	11.5	7.08	1.05
7140600	26.81	6.89	20.42	14.22	8.4	8.50	0.65
7140700	57.49	58.20	21.14	32.92	10.6	13.70	1.19
7141400	1.43	1.43	20.41	3.30	16.2	2.61	1.05
7141600	29.59	28.00	21.40	23.33	11.1	10.74	1.11
7141800	17.41	17.00	22.79	13.06	14.3	6.73	1.09
7142100	10.00	10.30	23.82	10.42	11.0	6.33	1.05
7142500	48.53	14.30	24.55	22.47	7.0	12.21	4.90
7142700	93.95	72.00	27.79	29.32	6.6	14.84	3.70
7142860	43.26	43.00	25.79	16.90	7.1	10.05	1.04
7142900	62.62	61.00	24.37	19.49	10.2	9.82	1.05
7143100	1.53	1.48	26.09	3.24	20.5	2.38	1.03
7143200	19.13	19.00	26.49	11.86	11.0	6.90	1.03
7143500	24.51	25.00	27.73	10.59	13.1	6.04	0.83
7143600	71.96	71.00	27.92	19.29	8.8	10.24	0.84
7144850	21.59	21.00	25.24	13.31	10.7	7.50	2.01
7144900	1.59	1.48	25.67	2.65	23.7	1.99	2.09
7145300	5.24	5.03	30.42	5.49	18.3	3.51	1.17
7148700	5.03	5.31	25.50	3.95	65.2	1.85	2.49
7		20					

Note: DA = drainage area, CDA $=$ contributing drainage area, MAP $=$ mean annual precipitation, $\mathrm{L}=$ main-channel length, $\mathrm{Tc}=$ time of concentration, $\mathrm{SP}=$ generalized soil permeability

TABLE A. 2
Watershed Characteristics (Continued)

Station number	$\begin{gathered} \hline \text { DA } \\ \left(\mathrm{mi}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{CDA} \\ & \left(\mathrm{mi}^{2}\right) \end{aligned}$	$\begin{gathered} \hline \text { MAP } \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{L} \\ (\mathrm{mi}) \end{gathered}$	$\begin{gathered} \mathrm{Sl} \\ (\mathrm{ft} / \mathrm{mi}) \end{gathered}$	$\begin{gathered} \hline \mathrm{T}_{\mathrm{c}} \\ (\mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SP} \\ \text { (in. } / \mathrm{hr} \text {) } \end{gathered}$
7148800	2.15	2.04	26.38	3.35	35.9	2.02	1.35
7150580	7.24	7.21	30.64	8.22	15.6	4.83	0.38
7151600	11.89	12.00	28.64	11.39	20.3	5.48	1.88
7152520	0.92	0.97	31.71	2.33	30.2	1.69	0.37
7155100	10.58	11.00	16.01	11.66	27.3	5.05	1.28
7155900	50.00	10.00	16.44	24.42	16.1	9.79	1.10
7156600	19.68	8.00	18.16	11.56	23.6	5.27	2.03
7156700	3.03	2.41	18.96	4.82	32.8	2.65	3.12
7157100	54.42	44.00	19.97	18.94	12.8	8.92	0.92
7157400	8.46	6.57	20.99	9.69	31.7	4.25	0.95
7157550	4.46	4.22	21.98	5.15	55.8	2.32	4.68
7157700	34.35	34.00	22.40	21.52	26.6	7.63	1.56
7157900	41.72	39.00	24.20	17.96	11.4	8.96	2.67
7158020	4.13	4.26	26.15	5.99	37.1	2.94	1.58
7158080	1.76	1.61	25.96	2.54	63.3	1.40	1.12
7158180	8.33	8.23	28.51	10.36	15.5	5.63	0.54
7158500	13.80	14.50	30.36	10.58	14.7	5.81	6.33
7158550	4.92	5.08	28.94	6.67	14.9	4.26	1.04
7160350	67.92	70.30	30.48	18.70	13.1	8.78	2.36
7226200	34.18	34.00	15.97	18.74	49.0	5.69	1.17
7226300	96.96	68.00	16.00	25.92	28.5	8.44	0.81
7227295	1.35	1.35	15.98	2.58	51.5	1.51	1.83
7227300	51.38	51.38	15.98	24.85	29.2	8.14	1.45
7227460	1.61	1.60	17.19	2.71	89.7	1.30	2.71
7228290	9.08	10.40	27.67	7.20	38.2	3.29	0.96
7228450	2.23	2.31	29.36	3.74	54.2	1.90	1.07
7232650	33.10	31.00	16.01	20.80	18.9	8.36	1.21
7234050	4.16	4.22	20.33	4.95	25.6	2.93	0.96
7234290	8.59	8.57	22.45	4.90	33.9	2.65	4.84
7235700	17.54	17.80	23.12	9.26	22.7	4.61	1.30
7237750	11.63	11.50	25.01	7.90	54.2	3.11	2.23
7239050	0.53	0.52	27.99	1.39	92.2	0.83	2.35
7321500	0.67	0.62	25.32	1.77	92.4	0.97	0.79

Note: DA = drainage area, CDA = contributing drainage area, MAP = mean annual precipitation, $\mathrm{L}=$ main-channel length, $\mathrm{Tc}=$ time of concentration, $\mathrm{SP}=$ generalized soil permeability

TABLE A. 3
Representative Rainfall Intensities

Station number	i_{2} (in./hr)	i_{5} (in. $/ \mathrm{hr})$	i_{10} (in./hr)	i_{25} (in./hr)	i_{50} (in./hr)	i_{100} (in./hr)
06687600	0.20	0.27	0.32	0.38	0.42	0.48
06759700	0.45	0.62	0.74	0.89	1.01	1.13
06759900	0.41	0.58	0.68	0.84	0.93	1.05
06760200	0.60	0.86	1.03	1.28	1.45	1.64
06760430	0.27	0.34	0.38	0.45	0.51	0.55
06763200	0.25	0.34	0.42	0.49	0.54	0.65
06767200	0.75	1.00	1.20	1.43	1.61	1.81
06768050	1.03	1.38	1.63	1.95	2.20	2.45
06768100	0.49	0.65	0.77	0.90	1.05	1.16
06768200	0.31	0.42	0.49	0.55	0.66	0.71
06768300	0.66	0.88	1.04	1.24	1.41	1.59
06768400	0.33	0.43	0.52	0.57	0.69	0.74
06768500	0.19	0.26	0.31	0.36	0.39	0.45
06769100	1.40	1.85	2.17	2.60	2.93	3.27
06769200	0.38	0.50	0.59	0.67	0.80	0.87
06769300	0.57	0.76	0.89	1.06	1.21	1.37
06769500	0.29	0.38	0.45	0.51	0.60	0.65
06770600	0.82	1.09	1.31	1.56	1.74	1.96
06770700	0.29	0.38	0.45	0.51	0.60	0.65
06770800	0.27	0.37	0.44	0.49	0.58	0.63
06770900	0.22	0.30	0.36	0.41	0.46	0.52
06770910	0.15	0.21	0.25	0.29	0.31	0.36
06782800	0.44	0.59	0.69	0.80	0.94	1.04
06782900	0.67	0.90	1.06	1.26	1.43	1.61
06784700	0.24	0.31	0.37	0.43	0.48	0.54
06784800	0.15	0.20	0.24	0.29	0.31	0.36
06789200	0.53	0.70	0.82	0.96	1.10	1.23
06789300	0.36	0.47	0.56	0.63	0.75	0.81
06789400	0.23	0.31	0.36	0.42	0.47	0.53
06789500	0.15	0.19	0.23	0.27	0.30	0.34
06790900	0.56	0.74	0.87	1.02	1.15	1.30
06821300	0.34	0.46	0.54	0.66	0.74	0.84
06821400	0.43	0.56	0.66	0.79	0.89	1.00
06822600	0.49	0.68	0.82	0.98	1.12	1.25
06826900	0.36	0.49	0.59	0.74	0.83	0.92
06828100	0.83	1.13	1.37	1.62	1.79	2.05
06829700	0.50	0.68	0.80	0.95	1.10	1.24
06834200	0.19	0.25	0.29	0.34	0.38	0.42
06835100	0.30	0.42	0.49	0.56	0.66	0.73
06838200	0.14	0.19	0.23	0.27	0.30	0.34
06838550	0.19	0.26	0.31	0.36	0.40	0.46
06839200	0.68	0.91	1.10	1.30	1.46	1.66

TABLE A. 3
Representative Rainfall Intensities (Continued)

Station number	i_{2} (in./hr)	i_{5} (in./hr)	i_{10} (in./hr)	i_{25} (in./hr)	i_{50} (in./hr)	i_{100} (in./hr)
06839400	0.38	0.52	0.62	0.71	0.84	0.92
06839600	0.52	0.70	0.82	0.98	1.13	1.27
06839850	0.51	0.69	0.80	0.96	1.11	1.25
06839900	0.29	0.39	0.47	0.52	0.63	0.67
06839950	0.25	0.34	0.40	0.45	0.53	0.58
06840000	0.17	0.23	0.28	0.33	0.36	0.41
06840500	0.31	0.42	0.49	0.55	0.66	0.71
06841500	0.16	0.22	0.26	0.30	0.33	0.38
06844210	0.13	0.18	0.21	0.25	0.27	0.31
06844700	0.14	0.19	0.22	0.26	0.29	0.34
06844800	0.26	0.35	0.42	0.49	0.56	0.63
06845100	0.24	0.32	0.38	0.44	0.50	0.56
06845900	0.54	0.73	0.87	1.04	1.18	1.35
06846200	0.48	0.64	0.76	0.90	1.03	1.17
06847600	0.42	0.56	0.67	0.78	0.90	1.01
06848200	1.16	1.54	1.82	2.16	2.43	2.72
06850200	0.35	0.46	0.54	0.62	0.73	0.79
06851100	0.21	0.29	0.34	0.40	0.44	0.50
06851300	0.34	0.45	0.53	0.61	0.72	0.77
06852000	0.18	0.24	0.28	0.33	0.36	0.42
06853100	1.20	1.58	1.85	2.19	2.47	2.75
06855900	0.25	0.33	0.38	0.45	0.51	0.57
06856100	0.18	0.24	0.28	0.34	0.37	0.42
06858700	1.27	1.71	2.01	2.42	2.73	3.06
06860300	0.14	0.19	0.22	0.26	0.29	0.33
06863400	0.44	0.59	0.69	0.81	0.94	1.04
06863700	0.42	0.56	0.66	0.76	0.88	0.98
06863900	0.17	0.23	0.28	0.33	0.36	0.41
06864300	0.65	0.87	1.02	1.19	1.35	1.52
06864700	0.45	0.60	0.70	0.82	0.94	1.05
06866800	0.74	0.99	1.18	1.39	1.56	1.77
06867800	1.79	2.32	2.68	3.20	3.60	3.99
06868300	0.73	0.97	1.15	1.34	1.51	1.70
06868700	0.29	0.39	0.45	0.53	0.61	0.68
06868900	0.69	0.92	1.08	1.26	1.42	1.60
06871900	0.21	0.29	0.34	0.40	0.44	0.50
06872100	0.17	0.23	0.27	0.32	0.35	0.40
06872300	0.19	0.25	0.30	0.36	0.39	0.44
06872600	0.55	0.72	0.85	1.00	1.13	1.27
06873300	1.28	1.68	1.97	2.34	2.64	2.94
06873700	0.24	0.32	0.38	0.45	0.50	0.57
06873800	0.99	1.32	1.56	1.84	2.07	2.32

TABLE A. 3
Representative Rainfall Intensities (Continued)

Station number	i_{2} (in./hr)	i_{5} (in./hr)	i_{10} (in./hr)	i_{25} (in./hr)	i_{50} (in./hr)	i_{100} (in./hr)
06874500	0.26	0.35	0.41	0.48	0.54	0.60
06876200	0.46	0.60	0.70	0.82	0.93	1.03
06880590	0.37	0.48	0.56	0.65	0.76	0.82
06880710	0.24	0.32	0.38	0.45	0.49	0.56
06880720	0.23	0.30	0.36	0.42	0.47	0.52
06880730	0.33	0.44	0.51	0.59	0.68	0.75
06880740	0.17	0.23	0.27	0.32	0.35	0.39
06880775	0.59	0.78	0.91	1.06	1.20	1.35
06883600	0.26	0.34	0.40	0.47	0.52	0.59
06883700	0.18	0.24	0.28	0.33	0.36	0.41
06883800	0.14	0.19	0.23	0.27	0.30	0.33
07126325	0.25	0.34	0.40	0.48	0.54	0.61
07126390	0.25	0.34	0.41	0.49	0.56	0.63
07126415	0.29	0.40	0.48	0.59	0.67	0.75
07126480	0.22	0.30	0.36	0.44	0.50	0.56
07133200	1.00	1.37	1.64	1.99	2.25	2.54
07138600	0.22	0.29	0.35	0.41	0.46	0.52
07138800	0.29	0.40	0.47	0.55	0.63	0.70
07139700	0.37	0.50	0.60	0.70	0.80	0.89
07139800	0.17	0.23	0.28	0.33	0.37	0.42
07140300	0.30	0.41	0.48	0.57	0.65	0.72
07140600	0.25	0.34	0.40	0.47	0.53	0.60
07140700	0.16	0.22	0.26	0.31	0.34	0.39
07141400	0.67	0.89	1.06	1.25	1.42	1.60
07141600	0.20	0.27	0.32	0.39	0.43	0.49
07141800	0.31	0.42	0.50	0.58	0.67	0.75
07142100	0.34	0.46	0.54	0.64	0.74	0.82
07142500	0.20	0.28	0.33	0.39	0.43	0.49
07142700	0.18	0.24	0.28	0.33	0.37	0.42
07142860	0.23	0.31	0.36	0.43	0.48	0.55
07142900	0.22	0.30	0.36	0.42	0.47	0.54
07143100	0.80	1.07	1.26	1.48	1.67	1.87
07143200	0.33	0.43	0.51	0.59	0.68	0.76
07143500	0.37	0.49	0.57	0.66	0.77	0.85
07143600	0.23	0.31	0.37	0.43	0.48	0.54
07144850	0.31	0.41	0.48	0.57	0.65	0.72
07144900	0.94	1.25	1.49	1.74	1.99	2.21
07145300	0.61	0.84	0.98	1.15	1.29	1.46
07148700	0.98	1.30	1.54	1.81	2.06	2.31
07148800	0.95	1.25	1.48	1.74	1.98	2.22
07150580	0.49	0.68	0.80	0.92	1.03	1.17
07151600	0.43	0.58	0.68	0.78	0.89	1.00

TABLE A. 3
Representative Rainfall Intensities (Continued)

Station number	i_{2} (in./hr)	i_{5} (in./hr)	i_{10} (in./hr)	i_{25} (in./hr)	i_{50} (in./hr)	i_{100} (in./hr)
07152520	1.19	1.52	1.79	2.10	2.38	2.66
07155100	0.33	0.45	0.53	0.62	0.70	0.78
07155900	0.21	0.28	0.33	0.39	0.43	0.50
07156600	0.36	0.49	0.58	0.68	0.78	0.86
07156700	0.66	0.88	1.05	1.23	1.40	1.57
07157100	0.23	0.31	0.37	0.43	0.49	0.55
07157400	0.45	0.61	0.72	0.85	0.97	1.09
07157550	0.77	1.04	1.24	1.45	1.65	1.84
07157700	0.28	0.38	0.44	0.52	0.59	0.66
07157900	0.25	0.34	0.40	0.48	0.54	0.60
07158020	0.69	0.96	1.12	1.32	1.50	1.69
07158080	1.27	1.66	1.94	2.30	2.60	2.90
07158180	0.43	0.59	0.70	0.81	0.91	1.03
07158500	0.42	0.58	0.68	0.80	0.89	1.01
07158550	0.53	0.74	0.87	1.01	1.13	1.29
07160350	0.29	0.40	0.46	0.54	0.60	0.68
07226200	0.28	0.37	0.43	0.53	0.61	0.69
07226300	0.19	0.25	0.29	0.35	0.41	0.46
07227295	0.91	1.19	1.41	1.72	1.96	2.21
07227300	0.22	0.29	0.34	0.42	0.48	0.54
07227460	1.16	1.56	1.80	2.17	2.45	2.72
07228290	0.62	0.87	1.02	1.21	1.37	1.54
07228450	1.05	1.38	1.63	1.92	2.19	2.47
07232650	0.21	0.29	0.35	0.41	0.45	0.52
07234050	0.62	0.83	0.99	1.16	1.32	1.49
07234290	0.69	0.94	1.11	1.31	1.49	1.67
07235700	0.45	0.61	0.72	0.84	0.96	1.07
07237750	0.63	0.87	1.02	1.21	1.38	1.55
07239050	1.91	2.44	2.81	3.33	3.74	4.14
07321500	1.63	2.13	2.47	2.96	3.33	3.71

TABLE A. 4
Flood Quantiles from Frequency Analyses for Individual Stations

Station number	$\begin{gathered} \mathrm{Q}_{2} \\ (\mathrm{cfs}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{5} \\ (\mathrm{cfs}) \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{10} \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{25} \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \mathrm{Q}_{50} \\ \text { (cfs) } \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{100} \\ & \text { (cfs) } \end{aligned}$
06687600	28	240	715	2250	4670	8944
06759700	85	316	630	1320	2134	3292
06759900	23	52	82	138	195	270
06760200	12	33	58	109	166	247
06760430	29	117	252	589	1035	1740
06763200	286	616	916	1393	1821	2314
06767200	23	70	125	229	336	473
06768050	14	65	141	307	496	753
06768100	11	69	163	382	638	990
06768200	101	283	472	796	1104	1469
06768300	23	103	208	421	646	933
06768400	29	121	244	492	758	1102
06768500	219	704	1265	2321	3403	4769
06769100	48	113	168	249	316	387
06769200	38	182	386	819	1298	1933
06769300	156	332	475	677	838	1007
06769500	271	1532	3570	8419	14306	22687
06770600	7	40	90	200	323	487
06770700	20	77	146	275	404	563
06770800	109	437	843	1620	2406	3377
06770900	109	437	843	1619	2404	3373
06770910	190	602	1049	1831	2576	3459
06782800	57	372	921	2286	3987	6441
06782900	39	234	566	1386	2416	3920
06784700	231	1135	2406	5057	7918	11612
06784800	764	1392	1857	2481	2961	3450
06789200	120	467	904	1767	2674	3833
06789300	449	1241	2016	3265	4377	5628
06789400	217	822	1563	2979	4424	6227
06789500	741	1200	1517	1923	2226	2527
06790900	221	695	1237	2244	3266	4547
06821300	84	460	1060	2486	4225	6716
06821400	254	749	1343	2534	3848	5629
06822600	19	124	339	1005	2045	3896
06826900	58	367	975	2787	5518	10229
06828100	412	1426	2731	5459	8541	12775
06829700	290	698	1099	1781	2428	3206
06834200	35	160	358	845	1471	2422
06835100	418	1548	3069	6370	10208	15604
06838200	78	292	562	1103	1682	2435
06838550	53	274	623	1450	2463	3926
06839200	204	643	1169	2201	3306	4762

TABLE A. 4
Flood Quantiles from Frequency Analyses for Individual Stations (Continued)

Station number	$\begin{gathered} \hline \mathrm{Q}_{2} \\ \text { (cfs) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Q}_{5} \\ \text { (cfs) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{10} \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q}_{25} \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{Q}_{50} \\ \text { (cfs) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{Q}_{100} \\ & \text { (cfs) } \\ & \hline \end{aligned}$
06839400	504	1802	3481	6985	10919	16286
06839600	729	2332	4258	8059	12140	17522
06839850	113	678	1649	4116	7297	12066
06839900	239	789	1424	2610	3810	5309
06839950	345	650	901	1270	1583	1926
06840000	387	1160	1993	3466	4892	6613
06840500	905	2800	5039	9408	14067	20184
06841500	486	1592	2892	5374	7943	11218
06844210	322	707	1041	1543	1970	2438
06844700	51	380	1004	2668	4864	8176
06844800	55	384	988	2570	4631	7719
06845100	238	586	922	1477	1988	2586
06845900	140	475	860	1565	2262	3114
06846200	200	725	1350	2523	3703	5159
06847600	183	475	755	1206	1609	2066
06848200	184	365	508	709	869	1036
06850200	218	480	703	1033	1309	1608
06851100	154	460	776	1313	1809	2386
06851300	212	472	697	1033	1316	1625
06852000	1097	2432	3714	5864	7900	10350
06853100	192	433	656	1014	1338	1713
06855900	910	1771	2494	3577	4504	5532
06856100	737	2145	3764	6874	10159	14452
06858700	247	505	712	1005	1243	1492
06860300	295	978	1770	3255	4762	6648
06863400	107	631	1478	3459	5809	9077
06863700	60	196	354	655	965	1358
06863900	297	1751	4238	10537	18655	30829
06864300	195	580	990	1704	2388	3206
06864700	390	1306	2353	4274	6180	8514
06866800	163	559	1026	1909	2809	3938
06867800	116	253	367	534	672	820
06868300	308	983	1748	3162	4582	6347
06868700	344	1087	1938	3531	5156	7201
06868900	95	226	347	542	716	915
06871900	1205	3429	5787	9939	13964	18844
06872100	561	1641	2860	5148	7509	10529
06872300	767	1384	1870	2564	3134	3747
06872600	94	267	459	815	1177	1636
06873300	28	131	282	619	1012	1557
06873700	181	1147	2899	7580	13888	23701
06873800	209	581	961	1608	2214	2928

TABLE A. 4
Flood Quantiles from Frequency Analyses for Individual Stations (Continued)

Station number	$\begin{gathered} \hline \mathrm{Q}_{2} \\ \text { (cfs) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Q}_{5} \\ (\mathrm{cfs}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{10} \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q}_{25} \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q}_{50} \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q}_{100} \\ & \text { (cfs) } \\ & \hline \end{aligned}$
06874500	606	1313	1933	2885	3710	4632
06876200	535	1274	1990	3187	4308	5638
06880590	258	624	968	1523	2023	2598
06880710	34	221	566	1510	2806	4856
06880720	264	769	1320	2314	3298	4512
06880730	175	361	524	777	1000	1253
06880740	515	1328	2143	3526	4831	6384
06880775	19	35	49	68	83	100
06883600	80	333	686	1457	2350	3589
06883700	242	737	1300	2358	3446	4829
06883800	322	1001	1779	3241	4739	6637
07126325	191	888	1855	3867	6051	8893
07126390	70	502	1235	2934	4885	7483
07126415	328	1055	1869	3345	4797	6569
07126480	139	551	1095	2220	3457	5105
07133200	103	588	1490	4077	7880	14336
07138600	29	125	249	497	755	1080
07138800	91	182	252	345	416	488
07139700	143	485	853	1478	2050	2702
07139800	90	588	1429	3443	5861	9236
07140300	182	708	1384	2743	4199	6092
07140600	258	740	1234	2064	2833	3727
07140700	427	1246	2103	3575	4965	6608
07141400	56	108	147	199	238	277
07141600	63	440	1116	2831	4999	8162
07141800	396	949	1456	2249	2945	3724
07142100	380	1190	2033	3447	4736	6208
07142500	306	1171	2257	4388	6618	9462
07142700	1152	2158	2950	4068	4976	5940
07142860	514	1682	3019	5488	7960	11020
07142900	955	2302	3550	5523	7268	9238
07143100	88	191	278	405	511	623
07143200	574	1200	1744	2579	3305	4120
07143500	956	1318	1543	1811	2000	2182
07143600	1167	2306	3277	4748	6021	7446
07144850	670	1568	2377	3626	4710	5914
07144900	331	712	1021	1458	1808	2171
07145300	598	1073	1421	1884	2238	2597
07148700	272	938	1699	3079	4427	6055
07148800	135	507	948	1757	2549	3501
07150580	446	1230	2210	4304	6782	10374
07151600	1197	2276	3108	4258	5168	6114

TABLE A. 4
Flood Quantiles from Frequency Analyses for Individual Stations (Continued)

Station number	Q_{2} (cfs)	Q_{5} (cfs)	Q_{10} (cfs)	Q_{25} (cfs)	Q_{50} (cfs)	Q_{100} (cfs)
07152520	78	305	618	1306	2110	3243
07155100	76	393	966	2598	5003	9126
07155900	63	719	2203	6499	12320	21076
07156600	466	1395	2307	3754	5008	6381
07156700	107	450	873	1659	2430	3349
07157100	365	1874	4024	8508	13325	19500
07157400	295	1287	2572	5084	7659	10857
07157550	91	287	497	860	1204	1609
07157700	358	675	913	1233	1479	1730
07157900	394	1121	1859	3093	4228	5542
07158020	540	773	922	1104	1235	1362
07158080	162	406	646	1051	1431	1881
07158180	700	2172	3966	7597	11612	17058
07158500	177	702	1445	3121	5134	8032
07158550	338	995	1769	3296	4948	7154
07160350	3291	5444	7139	9591	11646	13900
07226200	648	2126	3974	7769	12001	17768
07226300	425	808	1082	1433	1689	1939
07227295	44	121	202	349	493	671
07227300	132	866	2198	5717	10385	17523
07227460	96	449	1037	2591	4743	8242
07228290	738	2240	3921	7019	10141	14043
07228450	298	534	748	1099	1428	1825
07232650	125	649	1565	4055	7558	13298
07234050	43	286	737	1967	3647	6290
07234290	168	443	747	1317	1911	2682
07235700	451	1508	2731	5012	7312	10174
07237750	451	1007	1484	2190	2779	3415
07239050	97	218	343	571	804	1104
07321500	359	728	1061	1596	2085	2656

TABLE A. 5
Rational Runoff Coefficients from Frequency Analyses for Individual Stations

Station number	C2 (cfs)	C5 (cfs)	C10 (cfs)	C25 (cfs)	C50 (cfs)	C100 (cfs)
06687600	0.00	0.03	0.07	0.19	0.35	0.59
06759700	0.08	0.22	0.37	0.64	0.91	1.25
06759900	0.02	0.03	0.04	0.05	0.06	0.08
06760200	0.02	0.04	0.06	0.09	0.11	0.15
06760430	0.01	0.03	0.06	0.11	0.18	0.27
06763200	0.09	0.15	0.18	0.23	0.27	0.29
06767200	0.03	0.06	0.09	0.14	0.19	0.24
06768050	0.01	0.04	0.06	0.12	0.17	0.23
06768100	0.01	0.03	0.06	0.13	0.18	0.26
06768200	0.02	0.03	0.05	0.07	0.09	0.11
06768300	0.03	0.10	0.16	0.28	0.37	0.48
06768400	0.01	0.03	0.04	0.08	0.10	0.14
06768500	0.03	0.07	0.10	0.16	0.21	0.26
06769100	0.09	0.16	0.20	0.25	0.28	0.31
06769200	0.01	0.04	0.07	0.13	0.17	0.23
06769300	0.07	0.12	0.14	0.17	0.19	0.20
06769500	0.05	0.19	0.38	0.79	1.14	1.66
06770600	0.01	0.03	0.05	0.10	0.14	0.19
06770700	0.01	0.02	0.03	0.04	0.05	0.07
06770800	0.03	0.08	0.12	0.21	0.26	0.34
06770900	0.02	0.05	0.08	0.14	0.19	0.23
06770910	0.02	0.06	0.08	0.12	0.16	0.19
06782800	0.02	0.09	0.19	0.42	0.62	0.91
06782900	0.02	0.07	0.14	0.29	0.44	0.64
06784700	0.06	0.21	0.37	0.67	0.94	1.23
06784800	0.12	0.16	0.18	0.21	0.23	0.23
06789200	0.05	0.15	0.26	0.43	0.56	0.72
06789300	0.09	0.19	0.27	0.38	0.43	0.51
06789400	0.05	0.13	0.22	0.36	0.47	0.59
06789500	0.10	0.12	0.13	0.14	0.14	0.14
06790900	0.08	0.19	0.30	0.46	0.59	0.72
06821300	0.06	0.24	0.47	0.90	1.35	1.91
06821400	0.06	0.13	0.20	0.31	0.41	0.53
06822600	0.03	0.12	0.29	0.70	1.26	2.14
06826900	0.01	0.06	0.13	0.29	0.52	0.87
06828100	0.22	0.56	0.88	1.48	2.11	2.75
06829700	0.10	0.18	0.23	0.32	0.38	0.44
06834200	0.01	0.02	0.04	0.09	0.13	0.20
06835100	0.07	0.20	0.33	0.60	0.81	1.13
06838200	0.01	0.03	0.06	0.09	0.13	0.16
06838550	0.01	0.04	0.07	0.15	0.23	0.32
06839200	0.07	0.16	0.24	0.38	0.51	0.64

TABLE A. 5
Rational Runoff Coefficients from Frequency Analyses for Individual Stations (Continued)

Station number	Q 2 (cfs)	Q5 (cfs)	Q10 (cfs)	Q25 (cfs)	Q50 (cfs)	Q100 (cfs)
06839400	0.15	0.39	0.64	1.12	1.48	2.01
06839600	0.19	0.46	0.72	1.14	1.48	1.90
06839850	0.03	0.11	0.24	0.50	0.76	1.12
06839900	0.04	0.10	0.15	0.25	0.30	0.39
06839950	0.09	0.12	0.14	0.17	0.18	0.20
06840000	0.05	0.10	0.14	0.21	0.28	0.33
06840500	0.21	0.49	0.74	1.24	1.54	2.06
06841500	0.09	0.22	0.33	0.53	0.73	0.88
06844210	0.05	0.08	0.10	0.12	0.14	0.16
06844700	0.01	0.04	0.08	0.18	0.30	0.44
06844800	0.02	0.08	0.18	0.39	0.62	0.91
06845100	0.05	0.09	0.12	0.16	0.19	0.22
06845900	0.05	0.12	0.19	0.29	0.37	0.44
06846200	0.06	0.16	0.26	0.41	0.52	0.65
06847600	0.08	0.16	0.22	0.30	0.34	0.39
06848200	0.23	0.35	0.41	0.48	0.52	0.56
06850200	0.06	0.10	0.13	0.17	0.18	0.20
06851100	0.03	0.06	0.09	0.12	0.15	0.18
06851300	0.08	0.14	0.18	0.23	0.25	0.29
06852000	0.19	0.31	0.40	0.53	0.66	0.75
06853100	0.33	0.57	0.74	0.97	1.13	1.30
06855900	0.10	0.15	0.18	0.22	0.25	0.27
06856100	0.16	0.35	0.52	0.80	1.07	1.34
06858700	0.32	0.49	0.59	0.69	0.76	0.81
06860300	0.06	0.14	0.21	0.33	0.43	0.53
06863400	0.08	0.34	0.68	1.36	1.98	2.78
06863700	0.04	0.09	0.14	0.22	0.28	0.36
06863900	0.05	0.22	0.45	0.94	1.52	2.19
06864300	0.09	0.19	0.28	0.41	0.50	0.60
06864700	0.14	0.35	0.54	0.84	1.06	1.31
06866800	0.10	0.25	0.38	0.61	0.79	0.98
06867800	0.09	0.16	0.20	0.24	0.27	0.29
06868300	0.10	0.24	0.36	0.56	0.72	0.89
06868700	0.07	0.16	0.25	0.38	0.49	0.61
06868900	0.07	0.13	0.17	0.23	0.27	0.31
06871900	0.13	0.28	0.39	0.57	0.73	0.87
06872100	0.09	0.19	0.28	0.42	0.56	0.69
06872300	0.09	0.12	0.13	0.15	0.17	0.18
06872600	0.05	0.11	0.16	0.24	0.30	0.37
06873300	0.04	0.14	0.26	0.48	0.70	0.96
06873700	0.02	0.11	0.23	0.51	0.84	1.27
06873800	0.23	0.48	0.67	0.96	1.17	1.38

TABLE A. 5
Rational Runoff Coefficients from Frequency Analyses for Individual Stations (Continued)

Station number	Q2 (cfs)	Q5 (cfs)	Q10 (cfs)	Q25 (cfs)	Q50 (cfs)	Q100 (cfs)
06874500	0.14	0.22	0.28	0.35	0.40	0.45
06876200	0.19	0.34	0.46	0.63	0.74	0.88
0680590	0.21	0.39	0.52	0.72	0.82	0.97
06880710	0.01	0.05	0.12	0.27	0.45	0.70
06880720	0.05	0.10	0.15	0.22	0.28	0.34
06880730	0.06	0.09	0.11	0.14	0.16	0.18
06880740	0.05	0.10	0.14	0.20	0.24	0.28
06880775	0.04	0.06	0.06	0.08	0.08	0.09
0683600	0.04	0.11	0.20	0.35	0.51	0.70
0683700	0.06	0.14	0.21	0.33	0.44	0.54
06883800	0.06	0.14	0.22	0.33	0.44	0.55
07126325	0.02	0.08	0.15	0.26	0.36	0.47
07126390	0.01	0.05	0.10	0.19	0.28	0.38
07126415	0.04	0.08	0.12	0.18	0.23	0.28
07126480	0.02	0.05	0.08	0.14	0.19	0.25
07133200	0.07	0.27	0.58	1.31	2.23	3.60
07138600	0.01	0.03	0.04	0.07	0.10	0.12
07138800	0.06	0.09	0.10	0.12	0.13	0.13
07139700	0.06	0.16	0.24	0.35	0.43	0.51
07139800	0.01	0.05	0.10	0.21	0.32	0.45
07140300	0.05	0.15	0.24	0.41	0.55	0.72
07140600	0.06	0.13	0.18	0.25	0.31	0.36
07140700	0.07	0.16	0.22	0.32	0.40	0.46
07141400	0.09	0.13	0.15	0.17	0.18	0.19
07141600	0.02	0.08	0.18	0.39	0.62	0.88
07141800	0.11	0.20	0.26	0.35	0.39	0.45
07142100	0.17	0.40	0.58	0.84	1.00	1.19
07142500	0.05	0.14	0.22	0.36	0.49	0.62
07142700	0.11	0.15	0.18	0.21	0.22	0.24
07142860	0.08	0.20	0.30	0.46	0.60	0.73
07142900	0.11	0.19	0.25	0.33	0.38	0.43
07143100	0.11	0.18	0.23	0.28	0.31	0.34
07143200	0.14	0.23	0.28	0.35	0.39	0.44
07143500	0.16	0.17	0.17	0.17	0.17	0.16
07143600	0.11	0.16	0.19	0.24	0.27	0.30
07144850	0.16	0.28	0.36	0.46	0.52	0.59
07144900	0.34	0.56	0.67	0.82	0.89	0.96
07145300	0.29	0.38	0.43	0.49	0.52	0.53
07148700	0.09	0.22	0.34	0.53	0.67	0.81
07148800	0.10	0.30	0.46	0.73	0.94	1.15
07150580	0.20	0.39	0.60	1.01	1.42	1.91
07151600	0.37	0.52	0.60	0.71	0.77	0.80

TABLE A. 5
Rational Runoff Coefficients from Frequency Analyses for Individual Stations (Continued)

Station number	Q2 (cfs)	Q5 (cfs)	Q10 (cfs)	Q25 (cfs)	Q50 (cfs)	Q100 (cfs)
07152520	0.11	0.34	0.59	1.05	1.51	2.07
07155100	0.03	0.13	0.27	0.61	1.05	1.72
07155900	0.01	0.08	0.21	0.52	0.89	1.33
07156600	0.10	0.23	0.32	0.44	0.51	0.59
07156700	0.08	0.26	0.43	0.70	0.90	1.10
07157100	0.05	0.17	0.32	0.56	0.79	1.02
07157400	0.12	0.39	0.66	1.11	1.46	1.85
07157550	0.04	0.10	0.14	0.21	0.26	0.31
07157700	0.06	0.08	0.09	0.11	0.11	0.12
07157900	0.06	0.12	0.17	0.24	0.29	0.34
07158020	0.30	0.31	0.31	0.32	0.31	0.30
07158080	0.11	0.22	0.30	0.41	0.49	0.58
07158180	0.30	0.69	1.07	1.76	2.39	3.10
07158500	0.05	0.14	0.24	0.44	0.65	0.90
07158550	0.20	0.43	0.65	1.04	1.38	1.77
07160350	0.26	0.32	0.35	0.41	0.44	0.47
07226200	0.10	0.27	0.42	0.67	0.90	1.17
07226300	0.04	0.05	0.06	0.07	0.07	0.07
07227295	0.06	0.12	0.17	0.23	0.29	0.35
07227300	0.02	0.09	0.20	0.42	0.66	0.99
07227460	0.08	0.28	0.56	1.16	1.88	2.94
07228290	0.20	0.44	0.66	1.00	1.28	1.57
07228450	0.20	0.27	0.32	0.40	0.46	0.52
07232650	0.03	0.10	0.21	0.47	0.79	1.21
07234050	0.03	0.13	0.28	0.64	1.04	1.59
07234290	0.04	0.09	0.12	0.18	0.23	0.29
07235700	0.09	0.22	0.34	0.53	0.68	0.84
07237750	0.10	0.15	0.19	0.24	0.27	0.30
07239050	0.15	0.26	0.36	0.51	0.63	0.79
07321500	0.51	0.80	1.00	1.26	1.46	1.67

K-TRAN

KANSAS TRANSPORTATION RESEARCH AND NEW-DEVELOPMENT PROGRAM

